Introduce line_to_axis_pos(axis_codes axis, float where, float feed_rate = 0.0)

and use it in `homeaxis()` instead of `do_blocking_move_to_axis_pos()`.
`do_blocking_move_to_axis_pos` was wrong because it performed subdivided, delta-corrected moves for x- and y-axis.

The first common move for delta homing is like quick_home but for 3 towers.

Fix two warnings.
This commit is contained in:
AnHardt 2016-07-19 17:24:44 +02:00
parent 46117593b9
commit 11c075c6b2

View file

@ -1613,9 +1613,20 @@ inline float set_homing_bump_feedrate(AxisEnum axis) {
inline void line_to_current_position() { inline void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
} }
inline void line_to_z(float zPosition) { inline void line_to_z(float zPosition) {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
} }
inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
float old_feedrate_mm_m = feedrate_mm_m;
current_position[axis] = where;
feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
stepper.synchronize(); // The lost one
feedrate_mm_m = old_feedrate_mm_m;
}
// //
// line_to_destination // line_to_destination
// Move the planner, not necessarily synced with current_position // Move the planner, not necessarily synced with current_position
@ -1708,11 +1719,6 @@ static void do_blocking_move_to(float x, float y, float z, float fr_mm_m = 0.0)
feedrate_mm_m = old_feedrate_mm_m; feedrate_mm_m = old_feedrate_mm_m;
} }
inline void do_blocking_move_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
current_position[axis] = where;
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
}
inline void do_blocking_move_to_x(float x, float fr_mm_m = 0.0) { inline void do_blocking_move_to_x(float x, float fr_mm_m = 0.0) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m); do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
} }
@ -2425,19 +2431,17 @@ static void homeaxis(AxisEnum axis) {
#endif #endif
// Move towards the endstop until an endstop is triggered // Move towards the endstop until an endstop is triggered
do_blocking_move_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir, homing_feedrate_mm_m[axis]); line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
// Set the axis position as setup for the move // Set the axis position as setup for the move
current_position[axis] = 0; current_position[axis] = 0;
sync_plan_position(); sync_plan_position();
// Move away from the endstop by the axis HOME_BUMP_MM // Move away from the endstop by the axis HOME_BUMP_MM
do_blocking_move_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir, homing_feedrate_mm_m[axis]); line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
// Slow down the feedrate for the next move
// Move slowly towards the endstop until triggered // Move slowly towards the endstop until triggered
do_blocking_move_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, set_homing_bump_feedrate(axis)); line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, set_homing_bump_feedrate(axis));
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
@ -2458,7 +2462,7 @@ static void homeaxis(AxisEnum axis) {
sync_plan_position(); sync_plan_position();
// Move to the adjusted endstop height // Move to the adjusted endstop height
do_blocking_move_to_z(adj, homing_feedrate_mm_m[axis]); line_to_axis_pos(axis, adj);
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag(false); stepper.set_homing_flag(false);
@ -2475,7 +2479,7 @@ static void homeaxis(AxisEnum axis) {
DEBUG_POS("", current_position); DEBUG_POS("", current_position);
} }
#endif #endif
do_blocking_move_to_axis_pos(axis, endstop_adj[axis], set_homing_bump_feedrate(axis)); line_to_axis_pos(axis, endstop_adj[axis]);
} }
#endif #endif
@ -2825,30 +2829,6 @@ inline void gcode_G4() {
} }
#endif #endif
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
#if ENABLED(DUAL_X_CARRIAGE)
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#else
int x_axis_home_dir = home_dir(X_AXIS);
#endif
float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1);
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
}
#endif // QUICK_HOME
#if ENABLED(NOZZLE_PARK_FEATURE) #if ENABLED(NOZZLE_PARK_FEATURE)
#include "nozzle.h" #include "nozzle.h"
@ -2863,6 +2843,34 @@ inline void gcode_G4() {
} }
#endif // NOZZLE_PARK_FEATURE #endif // NOZZLE_PARK_FEATURE
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
// Pretend the current position is 0,0
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
sync_plan_position();
#if ENABLED(DUAL_X_CARRIAGE)
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#else
int x_axis_home_dir = home_dir(X_AXIS);
#endif
float mlx = max_length(X_AXIS),
mly = max_length(Y_AXIS),
mlratio = mlx > mly ? mly / mlx : mlx / mly,
fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
}
#endif // QUICK_HOME
/** /**
* G28: Home all axes according to settings * G28: Home all axes according to settings
* *
@ -2931,20 +2939,19 @@ inline void gcode_G28() {
*/ */
// Pretend the current position is 0,0,0 // Pretend the current position is 0,0,0
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; // This is like quick_home_xy() but for 3 towers.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
sync_plan_position(); sync_plan_position();
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH); current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS]; feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
line_to_destination(); line_to_current_position();
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags endstops.hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
// Destination reached // take care of back off and rehome. Now one carriage is at the top.
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
// take care of back off and rehome now we are all at the top
HOMEAXIS(X); HOMEAXIS(X);
HOMEAXIS(Y); HOMEAXIS(Y);
HOMEAXIS(Z); HOMEAXIS(Z);
@ -5325,7 +5332,7 @@ inline void gcode_M200() {
if (volumetric_enabled) { if (volumetric_enabled) {
filament_size[target_extruder] = code_value_linear_units(); filament_size[target_extruder] = code_value_linear_units();
// make sure all extruders have some sane value for the filament size // make sure all extruders have some sane value for the filament size
for (int i = 0; i < COUNT(filament_size); i++) for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
} }
} }
@ -8695,6 +8702,6 @@ float calculate_volumetric_multiplier(float diameter) {
} }
void calculate_volumetric_multipliers() { void calculate_volumetric_multipliers() {
for (int i = 0; i < COUNT(filament_size); i++) for (uint8_t i = 0; i < COUNT(filament_size); i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
} }