|
|
|
@ -22,7 +22,7 @@
|
|
|
|
|
|
|
|
|
|
#include "../../inc/MarlinConfigPre.h"
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
|
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
|
|
|
|
|
|
|
|
|
#include "../../feature/z_stepper_align.h"
|
|
|
|
|
|
|
|
|
@ -51,364 +51,398 @@
|
|
|
|
|
/**
|
|
|
|
|
* G34: Z-Stepper automatic alignment
|
|
|
|
|
*
|
|
|
|
|
* I<iterations>
|
|
|
|
|
* T<accuracy>
|
|
|
|
|
* A<amplification>
|
|
|
|
|
* R<recalculate> points based on current probe offsets
|
|
|
|
|
* Manual stepper lock controls (reset by G28):
|
|
|
|
|
* L Unlock all steppers
|
|
|
|
|
* Z<1-4> Z stepper to lock / unlock
|
|
|
|
|
* S<state> 0=UNLOCKED 1=LOCKED. If omitted, assume LOCKED.
|
|
|
|
|
*
|
|
|
|
|
* Examples:
|
|
|
|
|
* G34 Z1 ; Lock Z1
|
|
|
|
|
* G34 L Z2 ; Unlock all, then lock Z2
|
|
|
|
|
* G34 Z2 S0 ; Unlock Z2
|
|
|
|
|
*
|
|
|
|
|
* With Z_STEPPER_AUTO_ALIGN:
|
|
|
|
|
* I<iterations> Number of tests. If omitted, Z_STEPPER_ALIGN_ITERATIONS.
|
|
|
|
|
* T<accuracy> Target Accuracy factor. If omitted, Z_STEPPER_ALIGN_ACC.
|
|
|
|
|
* A<amplification> Provide an Amplification value. If omitted, Z_STEPPER_ALIGN_AMP.
|
|
|
|
|
* R Flag to recalculate points based on current probe offsets
|
|
|
|
|
*/
|
|
|
|
|
void GcodeSuite::G34() {
|
|
|
|
|
DEBUG_SECTION(log_G34, "G34", DEBUGGING(LEVELING));
|
|
|
|
|
if (DEBUGGING(LEVELING)) log_machine_info();
|
|
|
|
|
|
|
|
|
|
do { // break out on error
|
|
|
|
|
planner.synchronize(); // Prevent damage
|
|
|
|
|
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 4
|
|
|
|
|
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
|
|
|
|
|
#elif NUM_Z_STEPPER_DRIVERS > 4
|
|
|
|
|
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
|
|
|
|
|
break;
|
|
|
|
|
#endif
|
|
|
|
|
const bool seenL = parser.seen('L');
|
|
|
|
|
if (seenL) stepper.set_all_z_lock(false);
|
|
|
|
|
|
|
|
|
|
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
|
|
|
|
|
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
|
|
|
|
|
break;
|
|
|
|
|
const bool seenZ = parser.seenval('Z');
|
|
|
|
|
if (seenZ) {
|
|
|
|
|
const bool state = parser.boolval('S', true);
|
|
|
|
|
switch (parser.intval('Z')) {
|
|
|
|
|
case 1: stepper.set_z1_lock(state); break;
|
|
|
|
|
case 2: stepper.set_z2_lock(state); break;
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 3
|
|
|
|
|
case 3: stepper.set_z3_lock(state); break;
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS >= 4
|
|
|
|
|
case 4: stepper.set_z4_lock(state); break;
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
|
|
|
|
|
if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (seenL || seenZ) {
|
|
|
|
|
stepper.set_separate_multi_axis(seenZ);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const float z_auto_align_amplification =
|
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
Z_STEPPER_ALIGN_AMP;
|
|
|
|
|
#else
|
|
|
|
|
parser.floatval('A', Z_STEPPER_ALIGN_AMP);
|
|
|
|
|
if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
|
do { // break out on error
|
|
|
|
|
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 4
|
|
|
|
|
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
|
|
|
|
|
#elif NUM_Z_STEPPER_DRIVERS > 4
|
|
|
|
|
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
|
|
|
|
|
break;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (parser.seen('R')) z_stepper_align.reset_to_default();
|
|
|
|
|
|
|
|
|
|
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
|
|
|
|
|
|
|
|
|
|
// Wait for planner moves to finish!
|
|
|
|
|
planner.synchronize();
|
|
|
|
|
|
|
|
|
|
// Disable the leveling matrix before auto-aligning
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
|
TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
|
|
|
|
|
set_bed_leveling_enabled(false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
|
|
|
|
|
|
|
|
|
|
// Always home with tool 0 active
|
|
|
|
|
#if HAS_MULTI_HOTEND
|
|
|
|
|
const uint8_t old_tool_index = active_extruder;
|
|
|
|
|
tool_change(0, true);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
|
|
|
|
|
|
|
|
|
|
// In BLTOUCH HS mode, the probe travels in a deployed state.
|
|
|
|
|
// Users of G34 might have a badly misaligned bed, so raise Z by the
|
|
|
|
|
// length of the deployed pin (BLTOUCH stroke < 7mm)
|
|
|
|
|
#define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
|
|
|
|
|
|
|
|
|
|
// Compute a worst-case clearance height to probe from. After the first
|
|
|
|
|
// iteration this will be re-calculated based on the actual bed position
|
|
|
|
|
auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
|
|
|
|
|
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
|
|
|
|
|
return HYPOT2(diff.x, diff.y);
|
|
|
|
|
};
|
|
|
|
|
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
|
|
|
|
|
#elif NUM_Z_STEPPER_DRIVERS == 4
|
|
|
|
|
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
|
|
|
|
|
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
|
|
|
|
|
#else
|
|
|
|
|
magnitude2(0, 1)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// Home before the alignment procedure
|
|
|
|
|
if (!all_axes_known()) home_all_axes();
|
|
|
|
|
|
|
|
|
|
// Move the Z coordinate realm towards the positive - dirty trick
|
|
|
|
|
current_position.z += z_probe * 0.5f;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
|
|
|
|
|
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
|
|
|
|
|
#else
|
|
|
|
|
float last_z_align_level_indicator = 10000.0f;
|
|
|
|
|
#endif
|
|
|
|
|
float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
|
|
|
|
|
z_maxdiff = 0.0f,
|
|
|
|
|
amplification = z_auto_align_amplification;
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
bool adjustment_reverse = false;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
|
|
|
|
|
const uint8_t iter_str_len = strlen_P(msg_iteration);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Final z and iteration values will be used after breaking the loop
|
|
|
|
|
float z_measured_min;
|
|
|
|
|
uint8_t iteration = 0;
|
|
|
|
|
bool err_break = false; // To break out of nested loops
|
|
|
|
|
while (iteration < z_auto_align_iterations) {
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
|
|
|
|
|
|
|
|
|
|
const int iter = iteration + 1;
|
|
|
|
|
SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
char str[iter_str_len + 2 + 1];
|
|
|
|
|
sprintf_P(str, msg_iteration, iter);
|
|
|
|
|
ui.set_status(str);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Initialize minimum value
|
|
|
|
|
z_measured_min = 100000.0f;
|
|
|
|
|
float z_measured_max = -100000.0f;
|
|
|
|
|
|
|
|
|
|
// Probe all positions (one per Z-Stepper)
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
// iteration odd/even --> downward / upward stepper sequence
|
|
|
|
|
const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
|
|
|
|
|
|
|
|
|
|
// Safe clearance even on an incline
|
|
|
|
|
if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING))
|
|
|
|
|
DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
|
|
|
|
|
|
|
|
|
|
// Probe a Z height for each stepper.
|
|
|
|
|
// Probing sanity check is disabled, as it would trigger even in normal cases because
|
|
|
|
|
// current_position.z has been manually altered in the "dirty trick" above.
|
|
|
|
|
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
|
|
|
|
|
if (isnan(z_probed_height)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Probing failed");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
|
|
|
|
|
err_break = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add height to each value, to provide a more useful target height for
|
|
|
|
|
// the next iteration of probing. This allows adjustments to be made away from the bed.
|
|
|
|
|
z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]);
|
|
|
|
|
|
|
|
|
|
// Remember the minimum measurement to calculate the correction later on
|
|
|
|
|
z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
|
|
|
|
|
z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
|
|
|
|
|
} // for (i)
|
|
|
|
|
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
// Adapt the next probe clearance height based on the new measurements.
|
|
|
|
|
// Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
|
|
|
|
|
z_maxdiff = z_measured_max - z_measured_min;
|
|
|
|
|
z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Replace the initial values in z_measured with calculated heights at
|
|
|
|
|
// each stepper position. This allows the adjustment algorithm to be
|
|
|
|
|
// shared between both possible probing mechanisms.
|
|
|
|
|
|
|
|
|
|
// This must be done after the next z_probe height is calculated, so that
|
|
|
|
|
// the height is calculated from actual print area positions, and not
|
|
|
|
|
// extrapolated motor movements.
|
|
|
|
|
|
|
|
|
|
// Compute the least-squares fit for all probed points.
|
|
|
|
|
// Calculate the Z position of each stepper and store it in z_measured.
|
|
|
|
|
// This allows the actual adjustment logic to be shared by both algorithms.
|
|
|
|
|
linear_fit_data lfd;
|
|
|
|
|
incremental_LSF_reset(&lfd);
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]);
|
|
|
|
|
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
|
|
|
|
|
}
|
|
|
|
|
finish_incremental_LSF(&lfd);
|
|
|
|
|
|
|
|
|
|
z_measured_min = 100000.0f;
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
|
|
|
|
|
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("\n"
|
|
|
|
|
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
|
|
|
|
|
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
char fstr1[10];
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 2
|
|
|
|
|
char msg[6 + (6 + 5) * 1 + 1];
|
|
|
|
|
#else
|
|
|
|
|
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
|
|
|
|
|
#endif
|
|
|
|
|
sprintf_P(msg,
|
|
|
|
|
PSTR("Diffs Z1-Z2=%s"
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
" Z2-Z3=%s"
|
|
|
|
|
" Z3-Z1=%s"
|
|
|
|
|
#endif
|
|
|
|
|
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
|
|
|
|
|
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
ui.set_status(msg);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
auto decreasing_accuracy = [](const float &v1, const float &v2){
|
|
|
|
|
if (v1 < v2 * 0.7f) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
|
|
|
|
|
// Check if the applied corrections go in the correct direction.
|
|
|
|
|
// Calculate the sum of the absolute deviations from the mean of the probe measurements.
|
|
|
|
|
// Compare to the last iteration to ensure it's getting better.
|
|
|
|
|
|
|
|
|
|
// Calculate mean value as a reference
|
|
|
|
|
float z_measured_mean = 0.0f;
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
|
|
|
|
|
z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
|
|
|
|
|
|
|
|
|
|
// Calculate the sum of the absolute deviations from the mean value
|
|
|
|
|
float z_align_level_indicator = 0.0f;
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
|
|
|
|
|
z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
|
|
|
|
|
|
|
|
|
|
// If it's getting worse, stop and throw an error
|
|
|
|
|
err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
last_z_align_level_indicator = z_align_level_indicator;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// The following correction actions are to be enabled for select Z-steppers only
|
|
|
|
|
stepper.set_separate_multi_axis(true);
|
|
|
|
|
|
|
|
|
|
bool success_break = true;
|
|
|
|
|
// Correct the individual stepper offsets
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
// Calculate current stepper move
|
|
|
|
|
float z_align_move = z_measured[zstepper] - z_measured_min;
|
|
|
|
|
const float z_align_abs = ABS(z_align_move);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Optimize one iteration's correction based on the first measurements
|
|
|
|
|
if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
|
|
|
|
|
|
|
|
|
|
// Check for less accuracy compared to last move
|
|
|
|
|
if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " last_z_align_move = ", last_z_align_move[zstepper]);
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " z_align_abs = ", z_align_abs);
|
|
|
|
|
adjustment_reverse = !adjustment_reverse;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Remember the alignment for the next iteration, but only if steppers move,
|
|
|
|
|
// otherwise it would be just zero (in case this stepper was at z_measured_min already)
|
|
|
|
|
if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Stop early if all measured points achieve accuracy target
|
|
|
|
|
if (z_align_abs > z_auto_align_accuracy) success_break = false;
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move);
|
|
|
|
|
|
|
|
|
|
// Lock all steppers except one
|
|
|
|
|
stepper.set_all_z_lock(true, zstepper);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Decreasing accuracy was detected so move was inverted.
|
|
|
|
|
// Will match reversed Z steppers on dual steppers. Triple will need more work to map.
|
|
|
|
|
if (adjustment_reverse) {
|
|
|
|
|
z_align_move = -z_align_move;
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " correction reversed to ", z_align_move);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Do a move to correct part of the misalignment for the current stepper
|
|
|
|
|
do_blocking_move_to_z(amplification * z_align_move + current_position.z);
|
|
|
|
|
} // for (zstepper)
|
|
|
|
|
|
|
|
|
|
// Back to normal stepper operations
|
|
|
|
|
stepper.set_all_z_lock(false);
|
|
|
|
|
stepper.set_separate_multi_axis(false);
|
|
|
|
|
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
if (success_break) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Target accuracy achieved.");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
|
|
|
|
|
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
|
|
|
|
|
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
iteration++;
|
|
|
|
|
} // while (iteration < z_auto_align_iterations)
|
|
|
|
|
const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
|
|
|
|
|
if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (err_break)
|
|
|
|
|
SERIAL_ECHOLNPGM("G34 aborted.");
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations));
|
|
|
|
|
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
|
|
|
|
|
}
|
|
|
|
|
const float z_auto_align_amplification = TERN(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS, Z_STEPPER_ALIGN_AMP, parser.floatval('A', Z_STEPPER_ALIGN_AMP));
|
|
|
|
|
if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Stow the probe, as the last call to probe.probe_at_point(...) left
|
|
|
|
|
// the probe deployed if it was successful.
|
|
|
|
|
probe.stow();
|
|
|
|
|
if (parser.seen('R')) z_stepper_align.reset_to_default();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(HOME_AFTER_G34)
|
|
|
|
|
// After this operation the z position needs correction
|
|
|
|
|
set_axis_never_homed(Z_AXIS);
|
|
|
|
|
// Home Z after the alignment procedure
|
|
|
|
|
process_subcommands_now_P(PSTR("G28Z"));
|
|
|
|
|
#else
|
|
|
|
|
// Use the probed height from the last iteration to determine the Z height.
|
|
|
|
|
// z_measured_min is used, because all steppers are aligned to z_measured_min.
|
|
|
|
|
// Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
|
|
|
|
|
current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
|
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
|
|
|
|
|
|
|
|
|
|
// Disable the leveling matrix before auto-aligning
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
|
TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
|
|
|
|
|
set_bed_leveling_enabled(false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
|
|
|
|
|
|
|
|
|
|
// Always home with tool 0 active
|
|
|
|
|
#if HAS_MULTI_HOTEND
|
|
|
|
|
const uint8_t old_tool_index = active_extruder;
|
|
|
|
|
tool_change(0, true);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
|
|
|
|
|
|
|
|
|
|
// In BLTOUCH HS mode, the probe travels in a deployed state.
|
|
|
|
|
// Users of G34 might have a badly misaligned bed, so raise Z by the
|
|
|
|
|
// length of the deployed pin (BLTOUCH stroke < 7mm)
|
|
|
|
|
#define Z_BASIC_CLEARANCE (Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE))
|
|
|
|
|
|
|
|
|
|
// Compute a worst-case clearance height to probe from. After the first
|
|
|
|
|
// iteration this will be re-calculated based on the actual bed position
|
|
|
|
|
auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
|
|
|
|
|
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
|
|
|
|
|
return HYPOT2(diff.x, diff.y);
|
|
|
|
|
};
|
|
|
|
|
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
|
|
|
|
|
#elif NUM_Z_STEPPER_DRIVERS == 4
|
|
|
|
|
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
|
|
|
|
|
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
|
|
|
|
|
#else
|
|
|
|
|
magnitude2(0, 1)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
// Home before the alignment procedure
|
|
|
|
|
if (!all_axes_known()) home_all_axes();
|
|
|
|
|
|
|
|
|
|
// Move the Z coordinate realm towards the positive - dirty trick
|
|
|
|
|
current_position.z += z_probe * 0.5f;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
#endif
|
|
|
|
|
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
|
|
|
|
|
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
|
|
|
|
|
|
|
|
|
|
// Restore the active tool after homing
|
|
|
|
|
TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
|
|
|
|
|
#else
|
|
|
|
|
float last_z_align_level_indicator = 10000.0f;
|
|
|
|
|
#endif
|
|
|
|
|
float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
|
|
|
|
|
z_maxdiff = 0.0f,
|
|
|
|
|
amplification = z_auto_align_amplification;
|
|
|
|
|
|
|
|
|
|
#if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
|
|
|
|
|
set_bed_leveling_enabled(leveling_was_active);
|
|
|
|
|
#endif
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
bool adjustment_reverse = false;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
}while(0);
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
PGM_P const msg_iteration = GET_TEXT(MSG_ITERATION);
|
|
|
|
|
const uint8_t iter_str_len = strlen_P(msg_iteration);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Final z and iteration values will be used after breaking the loop
|
|
|
|
|
float z_measured_min;
|
|
|
|
|
uint8_t iteration = 0;
|
|
|
|
|
bool err_break = false; // To break out of nested loops
|
|
|
|
|
while (iteration < z_auto_align_iterations) {
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
|
|
|
|
|
|
|
|
|
|
const int iter = iteration + 1;
|
|
|
|
|
SERIAL_ECHOLNPAIR("\nG34 Iteration: ", iter);
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
char str[iter_str_len + 2 + 1];
|
|
|
|
|
sprintf_P(str, msg_iteration, iter);
|
|
|
|
|
ui.set_status(str);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Initialize minimum value
|
|
|
|
|
z_measured_min = 100000.0f;
|
|
|
|
|
float z_measured_max = -100000.0f;
|
|
|
|
|
|
|
|
|
|
// Probe all positions (one per Z-Stepper)
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
// iteration odd/even --> downward / upward stepper sequence
|
|
|
|
|
const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
|
|
|
|
|
|
|
|
|
|
// Safe clearance even on an incline
|
|
|
|
|
if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING))
|
|
|
|
|
DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
|
|
|
|
|
|
|
|
|
|
// Probe a Z height for each stepper.
|
|
|
|
|
// Probing sanity check is disabled, as it would trigger even in normal cases because
|
|
|
|
|
// current_position.z has been manually altered in the "dirty trick" above.
|
|
|
|
|
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
|
|
|
|
|
if (isnan(z_probed_height)) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Probing failed");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_LCD_PROBING_FAILED);
|
|
|
|
|
err_break = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add height to each value, to provide a more useful target height for
|
|
|
|
|
// the next iteration of probing. This allows adjustments to be made away from the bed.
|
|
|
|
|
z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]);
|
|
|
|
|
|
|
|
|
|
// Remember the minimum measurement to calculate the correction later on
|
|
|
|
|
z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
|
|
|
|
|
z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
|
|
|
|
|
} // for (i)
|
|
|
|
|
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
// Adapt the next probe clearance height based on the new measurements.
|
|
|
|
|
// Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
|
|
|
|
|
z_maxdiff = z_measured_max - z_measured_min;
|
|
|
|
|
z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Replace the initial values in z_measured with calculated heights at
|
|
|
|
|
// each stepper position. This allows the adjustment algorithm to be
|
|
|
|
|
// shared between both possible probing mechanisms.
|
|
|
|
|
|
|
|
|
|
// This must be done after the next z_probe height is calculated, so that
|
|
|
|
|
// the height is calculated from actual print area positions, and not
|
|
|
|
|
// extrapolated motor movements.
|
|
|
|
|
|
|
|
|
|
// Compute the least-squares fit for all probed points.
|
|
|
|
|
// Calculate the Z position of each stepper and store it in z_measured.
|
|
|
|
|
// This allows the actual adjustment logic to be shared by both algorithms.
|
|
|
|
|
linear_fit_data lfd;
|
|
|
|
|
incremental_LSF_reset(&lfd);
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]);
|
|
|
|
|
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
|
|
|
|
|
}
|
|
|
|
|
finish_incremental_LSF(&lfd);
|
|
|
|
|
|
|
|
|
|
z_measured_min = 100000.0f;
|
|
|
|
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
|
|
|
|
|
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("\n"
|
|
|
|
|
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
|
|
|
|
|
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
#if HAS_DISPLAY
|
|
|
|
|
char fstr1[10];
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 2
|
|
|
|
|
char msg[6 + (6 + 5) * 1 + 1];
|
|
|
|
|
#else
|
|
|
|
|
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
|
|
|
|
|
#endif
|
|
|
|
|
sprintf_P(msg,
|
|
|
|
|
PSTR("Diffs Z1-Z2=%s"
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
" Z2-Z3=%s"
|
|
|
|
|
" Z3-Z1=%s"
|
|
|
|
|
#endif
|
|
|
|
|
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
|
|
|
|
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
|
|
|
|
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
|
|
|
|
|
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
ui.set_status(msg);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
auto decreasing_accuracy = [](const float &v1, const float &v2){
|
|
|
|
|
if (v1 < v2 * 0.7f) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
|
|
|
|
|
// Check if the applied corrections go in the correct direction.
|
|
|
|
|
// Calculate the sum of the absolute deviations from the mean of the probe measurements.
|
|
|
|
|
// Compare to the last iteration to ensure it's getting better.
|
|
|
|
|
|
|
|
|
|
// Calculate mean value as a reference
|
|
|
|
|
float z_measured_mean = 0.0f;
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
|
|
|
|
|
z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
|
|
|
|
|
|
|
|
|
|
// Calculate the sum of the absolute deviations from the mean value
|
|
|
|
|
float z_align_level_indicator = 0.0f;
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
|
|
|
|
|
z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
|
|
|
|
|
|
|
|
|
|
// If it's getting worse, stop and throw an error
|
|
|
|
|
err_break = decreasing_accuracy(last_z_align_level_indicator, z_align_level_indicator);
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
last_z_align_level_indicator = z_align_level_indicator;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// The following correction actions are to be enabled for select Z-steppers only
|
|
|
|
|
stepper.set_separate_multi_axis(true);
|
|
|
|
|
|
|
|
|
|
bool success_break = true;
|
|
|
|
|
// Correct the individual stepper offsets
|
|
|
|
|
LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
|
|
|
|
|
// Calculate current stepper move
|
|
|
|
|
float z_align_move = z_measured[zstepper] - z_measured_min;
|
|
|
|
|
const float z_align_abs = ABS(z_align_move);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Optimize one iteration's correction based on the first measurements
|
|
|
|
|
if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
|
|
|
|
|
|
|
|
|
|
// Check for less accuracy compared to last move
|
|
|
|
|
if (decreasing_accuracy(last_z_align_move[zstepper], z_align_abs)) {
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " last_z_align_move = ", last_z_align_move[zstepper]);
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " z_align_abs = ", z_align_abs);
|
|
|
|
|
adjustment_reverse = !adjustment_reverse;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Remember the alignment for the next iteration, but only if steppers move,
|
|
|
|
|
// otherwise it would be just zero (in case this stepper was at z_measured_min already)
|
|
|
|
|
if (z_align_abs > 0) last_z_align_move[zstepper] = z_align_abs;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Stop early if all measured points achieve accuracy target
|
|
|
|
|
if (z_align_abs > z_auto_align_accuracy) success_break = false;
|
|
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move);
|
|
|
|
|
|
|
|
|
|
// Lock all steppers except one
|
|
|
|
|
stepper.set_all_z_lock(true, zstepper);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
|
|
|
// Decreasing accuracy was detected so move was inverted.
|
|
|
|
|
// Will match reversed Z steppers on dual steppers. Triple will need more work to map.
|
|
|
|
|
if (adjustment_reverse) {
|
|
|
|
|
z_align_move = -z_align_move;
|
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " correction reversed to ", z_align_move);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Do a move to correct part of the misalignment for the current stepper
|
|
|
|
|
do_blocking_move_to_z(amplification * z_align_move + current_position.z);
|
|
|
|
|
} // for (zstepper)
|
|
|
|
|
|
|
|
|
|
// Back to normal stepper operations
|
|
|
|
|
stepper.set_all_z_lock(false);
|
|
|
|
|
stepper.set_separate_multi_axis(false);
|
|
|
|
|
|
|
|
|
|
if (err_break) break;
|
|
|
|
|
|
|
|
|
|
if (success_break) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Target accuracy achieved.");
|
|
|
|
|
LCD_MESSAGEPGM(MSG_ACCURACY_ACHIEVED);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
iteration++;
|
|
|
|
|
} // while (iteration < z_auto_align_iterations)
|
|
|
|
|
|
|
|
|
|
if (err_break)
|
|
|
|
|
SERIAL_ECHOLNPGM("G34 aborted.");
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations));
|
|
|
|
|
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Stow the probe, as the last call to probe.probe_at_point(...) left
|
|
|
|
|
// the probe deployed if it was successful.
|
|
|
|
|
probe.stow();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(HOME_AFTER_G34)
|
|
|
|
|
// After this operation the z position needs correction
|
|
|
|
|
set_axis_never_homed(Z_AXIS);
|
|
|
|
|
// Home Z after the alignment procedure
|
|
|
|
|
process_subcommands_now_P(PSTR("G28Z"));
|
|
|
|
|
#else
|
|
|
|
|
// Use the probed height from the last iteration to determine the Z height.
|
|
|
|
|
// z_measured_min is used, because all steppers are aligned to z_measured_min.
|
|
|
|
|
// Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
|
|
|
|
|
current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Restore the active tool after homing
|
|
|
|
|
TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
|
|
|
|
|
|
|
|
|
|
#if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
|
|
|
|
|
set_bed_leveling_enabled(leveling_was_active);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
}while(0);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
|
|
|
|
|
|
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M422: Set a Z-Stepper automatic alignment XY point.
|
|
|
|
|
* Use repeatedly to set multiple points.
|
|
|
|
|