Merge pull request #4667 from thinkyhead/rc_M211_sw_endstop_switch

M211: Enable/Disable Software Endstops
This commit is contained in:
Scott Lahteine 2016-08-21 06:44:00 -05:00 committed by GitHub
commit 27b80b1dd1
9 changed files with 154 additions and 107 deletions

View file

@ -103,11 +103,7 @@ FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_
// Things to write to serial from Program memory. Saves 400 to 2k of RAM. // Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM(const char* str) { FORCE_INLINE void serialprintPGM(const char* str) {
char ch; while (char ch = pgm_read_byte(str++)) MYSERIAL.write(ch);
while ((ch = pgm_read_byte(str))) {
MYSERIAL.write(ch);
str++;
}
} }
void idle( void idle(
@ -245,8 +241,6 @@ void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return
void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
void clear_command_queue(); void clear_command_queue();
void clamp_to_software_endstops(float target[3]);
extern millis_t previous_cmd_ms; extern millis_t previous_cmd_ms;
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
@ -268,15 +262,25 @@ extern bool volumetric_enabled;
extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_known_position[XYZ]; // axis[n].is_known
extern bool axis_homed[3]; // axis[n].is_homed extern bool axis_homed[XYZ]; // axis[n].is_homed
extern volatile bool wait_for_heatup; extern volatile bool wait_for_heatup;
extern float current_position[NUM_AXIS]; extern float current_position[NUM_AXIS];
extern float position_shift[3]; extern float position_shift[XYZ];
extern float home_offset[3]; extern float home_offset[XYZ];
extern float sw_endstop_min[3];
extern float sw_endstop_max[3]; // Software Endstops
void update_software_endstops(AxisEnum axis);
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
extern float soft_endstop_min[XYZ];
extern float soft_endstop_max[XYZ];
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) #define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
@ -295,25 +299,25 @@ float code_value_temp_abs();
float code_value_temp_diff(); float code_value_temp_diff();
#if ENABLED(DELTA) #if ENABLED(DELTA)
extern float delta[3]; extern float delta[ABC];
extern float endstop_adj[3]; // axis[n].endstop_adj extern float endstop_adj[ABC]; // axis[n].endstop_adj
extern float delta_radius; extern float delta_radius;
extern float delta_diagonal_rod; extern float delta_diagonal_rod;
extern float delta_segments_per_second; extern float delta_segments_per_second;
extern float delta_diagonal_rod_trim_tower_1; extern float delta_diagonal_rod_trim_tower_1;
extern float delta_diagonal_rod_trim_tower_2; extern float delta_diagonal_rod_trim_tower_2;
extern float delta_diagonal_rod_trim_tower_3; extern float delta_diagonal_rod_trim_tower_3;
void inverse_kinematics(const float cartesian[3]); void inverse_kinematics(const float cartesian[XYZ]);
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
extern int delta_grid_spacing[2]; extern int delta_grid_spacing[2];
void adjust_delta(float cartesian[3]); void adjust_delta(float cartesian[XYZ]);
#endif #endif
#elif ENABLED(SCARA) #elif ENABLED(SCARA)
extern float delta[3]; extern float delta[ABC];
extern float axis_scaling[3]; // Build size scaling extern float axis_scaling[ABC]; // Build size scaling
void inverse_kinematics(const float cartesian[3]); void inverse_kinematics(const float cartesian[XYZ]);
void forward_kinematics_SCARA(float f_scara[3]); void forward_kinematics_SCARA(float f_scara[ABC]);
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)
@ -379,7 +383,6 @@ extern uint8_t active_extruder;
extern float mixing_factor[MIXING_STEPPERS]; extern float mixing_factor[MIXING_STEPPERS];
#endif #endif
void update_software_endstops(AxisEnum axis);
void calculate_volumetric_multipliers(); void calculate_volumetric_multipliers();
// Buzzer // Buzzer

View file

@ -205,6 +205,7 @@
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min> * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
* M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
Every normal extrude-only move will be classified as retract depending on the direction. Every normal extrude-only move will be classified as retract depending on the direction.
* M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
* M218 - Set a tool offset: T<index> X<offset> Y<offset> * M218 - Set a tool offset: T<index> X<offset> Y<offset>
* M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD) * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
* M221 - Set Flow Percentage: S<percent> * M221 - Set Flow Percentage: S<percent>
@ -285,8 +286,8 @@ uint8_t marlin_debug_flags = DEBUG_NONE;
float current_position[NUM_AXIS] = { 0.0 }; float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 }; static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false }; bool axis_known_position[XYZ] = { false };
bool axis_homed[3] = { false }; bool axis_homed[XYZ] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
@ -326,15 +327,18 @@ float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DI
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
// The distance that XYZ has been offset by G92. Reset by G28. // The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[3] = { 0 }; float position_shift[XYZ] = { 0 };
// This offset is added to the configured home position. // This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM. // Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[3] = { 0 }; float home_offset[XYZ] = { 0 };
// Software Endstops. Default to configured limits. // Software Endstops are based on the configured limits.
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; bool soft_endstops_enabled = true;
#endif
float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
#if FAN_COUNT > 0 #if FAN_COUNT > 0
int fanSpeeds[FAN_COUNT] = { 0 }; int fanSpeeds[FAN_COUNT] = { 0 };
@ -458,11 +462,11 @@ static uint8_t target_extruder;
#define TOWER_2 Y_AXIS #define TOWER_2 Y_AXIS
#define TOWER_3 Z_AXIS #define TOWER_3 Z_AXIS
float delta[3]; float delta[ABC];
float cartesian_position[3] = { 0 }; float cartesian_position[XYZ] = { 0 };
#define SIN_60 0.8660254037844386 #define SIN_60 0.8660254037844386
#define COS_60 0.5 #define COS_60 0.5
float endstop_adj[3] = { 0 }; float endstop_adj[ABC] = { 0 };
// these are the default values, can be overriden with M665 // these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS; float delta_radius = DELTA_RADIUS;
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
@ -491,8 +495,8 @@ static uint8_t target_extruder;
#if ENABLED(SCARA) #if ENABLED(SCARA)
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND; float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
float delta[3]; float delta[ABC];
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
@ -1411,7 +1415,7 @@ DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte); DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \ static const PROGMEM type array##_P[XYZ] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \ static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); } { return pgm_read_any(&array##_P[axis]); }
@ -1477,21 +1481,21 @@ void update_software_endstops(AxisEnum axis) {
if (axis == X_AXIS) { if (axis == X_AXIS) {
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) { if (active_extruder != 0) {
sw_endstop_min[X_AXIS] = X2_MIN_POS + offs; soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
sw_endstop_max[X_AXIS] = dual_max_x + offs; soft_endstop_max[X_AXIS] = dual_max_x + offs;
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
return; return;
} }
} }
else else
#endif #endif
{ {
sw_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_min[axis] = base_min_pos(axis) + offs;
sw_endstop_max[axis] = base_max_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs;
} }
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -1499,16 +1503,15 @@ void update_software_endstops(AxisEnum axis) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]); SERIAL_ECHOPAIR("For ", axis_codes[axis]);
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]); SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]); SERIAL_ECHOPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
SERIAL_EOL; SERIAL_EOL;
} }
#endif #endif
#if ENABLED(DELTA) #if ENABLED(DELTA)
if (axis == Z_AXIS) { if (axis == Z_AXIS)
delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top(); delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
}
#endif #endif
} }
@ -1552,7 +1555,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (axis == X_AXIS || axis == Y_AXIS) { if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[3]; float homeposition[XYZ];
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i); LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
@ -1574,8 +1577,8 @@ static void set_axis_is_at_home(AxisEnum axis) {
* SCARA home positions are based on configuration since the actual * SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform. * limits are determined by the inverse kinematic transform.
*/ */
sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
} }
else else
#endif #endif
@ -3323,7 +3326,7 @@ inline void gcode_G28() {
switch (state) { switch (state) {
case MeshReport: case MeshReport:
if (mbl.has_mesh()) { if (mbl.has_mesh()) {
SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off"); SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS)); SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z)); SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
@ -5554,24 +5557,40 @@ inline void gcode_M206() {
*/ */
inline void gcode_M209() { inline void gcode_M209() {
if (code_seen('S')) { if (code_seen('S')) {
int t = code_value_int(); autoretract_enabled = code_value_bool();
switch (t) {
case 0:
autoretract_enabled = false;
break;
case 1:
autoretract_enabled = true;
break;
default:
unknown_command_error();
return;
}
for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false; for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
} }
} }
#endif // FWRETRACT #endif // FWRETRACT
/**
* M211: Enable, Disable, and/or Report software endstops
*
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
*/
inline void gcode_M211() {
SERIAL_ECHO_START;
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
if (code_seen('S')) soft_endstops_enabled = code_value_bool();
#endif
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
#else
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
#endif
SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
SERIAL_EOL;
}
#if HOTENDS > 1 #if HOTENDS > 1
/** /**
@ -6175,7 +6194,7 @@ inline void gcode_M428() {
bool err = false; bool err = false;
LOOP_XYZ(i) { LOOP_XYZ(i) {
if (axis_homed[i]) { if (axis_homed[i]) {
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0, float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
diff = current_position[i] - LOGICAL_POSITION(base, i); diff = current_position[i] - LOGICAL_POSITION(base, i);
if (diff > -20 && diff < 20) { if (diff > -20 && diff < 20) {
set_home_offset((AxisEnum)i, home_offset[i] - diff); set_home_offset((AxisEnum)i, home_offset[i] - diff);
@ -6499,8 +6518,7 @@ inline void gcode_M503() {
stepper.synchronize(); stepper.synchronize();
extruder_duplication_enabled = code_seen('S') && code_value_int() == 2; extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF); SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
SERIAL_EOL;
} }
#endif // M605 #endif // M605
@ -7495,6 +7513,10 @@ void process_next_command() {
break; break;
#endif // FWRETRACT #endif // FWRETRACT
case 211: // M211 - Enable, Disable, and/or Report software endstops
gcode_M211();
break;
#if HOTENDS > 1 #if HOTENDS > 1
case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset> case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
gcode_M218(); gcode_M218();
@ -7749,19 +7771,23 @@ void ok_to_send() {
SERIAL_EOL; SERIAL_EOL;
} }
void clamp_to_software_endstops(float target[3]) { #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
if (min_software_endstops) {
NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]); void clamp_to_software_endstops(float target[XYZ]) {
NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]); #if ENABLED(min_software_endstops)
NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]); NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
} NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
if (max_software_endstops) { NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]); #endif
NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]); #if ENABLED(max_software_endstops)
NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]); NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
} NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
} }
#endif
#if ENABLED(DELTA) #if ENABLED(DELTA)
void recalc_delta_settings(float radius, float diagonal_rod) { void recalc_delta_settings(float radius, float diagonal_rod) {
@ -7776,9 +7802,9 @@ void clamp_to_software_endstops(float target[3]) {
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
} }
void inverse_kinematics(const float in_cartesian[3]) { void inverse_kinematics(const float in_cartesian[XYZ]) {
const float cartesian[3] = { const float cartesian[XYZ] = {
RAW_X_POSITION(in_cartesian[X_AXIS]), RAW_X_POSITION(in_cartesian[X_AXIS]),
RAW_Y_POSITION(in_cartesian[Y_AXIS]), RAW_Y_POSITION(in_cartesian[Y_AXIS]),
RAW_Z_POSITION(in_cartesian[Z_AXIS]) RAW_Z_POSITION(in_cartesian[Z_AXIS])
@ -7808,7 +7834,7 @@ void clamp_to_software_endstops(float target[3]) {
} }
float delta_safe_distance_from_top() { float delta_safe_distance_from_top() {
float cartesian[3] = { float cartesian[XYZ] = {
LOGICAL_X_POSITION(0), LOGICAL_X_POSITION(0),
LOGICAL_Y_POSITION(0), LOGICAL_Y_POSITION(0),
LOGICAL_Z_POSITION(0) LOGICAL_Z_POSITION(0)
@ -7889,20 +7915,20 @@ void clamp_to_software_endstops(float target[3]) {
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
}; };
void forward_kinematics_DELTA(float point[3]) { void forward_kinematics_DELTA(float point[ABC]) {
forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
} }
void set_cartesian_from_steppers() { void set_cartesian_from_steppers() {
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(Z_AXIS)); stepper.get_axis_position_mm(C_AXIS));
} }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Adjust print surface height by linear interpolation over the bed_level array. // Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[3]) { void adjust_delta(float cartesian[XYZ]) {
if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done! if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
@ -8375,8 +8401,8 @@ void prepare_move_to_destination() {
#if ENABLED(SCARA) #if ENABLED(SCARA)
void forward_kinematics_SCARA(float f_scara[3]) { void forward_kinematics_SCARA(float f_scara[ABC]) {
// Perform forward kinematics, and place results in delta[3] // Perform forward kinematics, and place results in delta[]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos; float x_sin, x_cos, y_sin, y_cos;
@ -8401,9 +8427,9 @@ void prepare_move_to_destination() {
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
} }
void inverse_kinematics(const float cartesian[3]) { void inverse_kinematics(const float cartesian[XYZ]) {
// Inverse kinematics. // Inverse kinematics.
// Perform SCARA IK and place results in delta[3]. // Perform SCARA IK and place results in delta[].
// The maths and first version were done by QHARLEY. // The maths and first version were done by QHARLEY.
// Integrated, tweaked by Joachim Cerny in June 2014. // Integrated, tweaked by Joachim Cerny in June 2014.

View file

@ -157,6 +157,9 @@
#define MSG_ENDSTOP_OPEN "open" #define MSG_ENDSTOP_OPEN "open"
#define MSG_HOTEND_OFFSET "Hotend offsets:" #define MSG_HOTEND_OFFSET "Hotend offsets:"
#define MSG_DUPLICATION_MODE "Duplication mode: " #define MSG_DUPLICATION_MODE "Duplication mode: "
#define MSG_SOFT_ENDSTOPS "Soft endstops"
#define MSG_SOFT_MIN "Min"
#define MSG_SOFT_MAX "Max"
#define MSG_SD_CANT_OPEN_SUBDIR "Cannot open subdir " #define MSG_SD_CANT_OPEN_SUBDIR "Cannot open subdir "
#define MSG_SD_INIT_FAIL "SD init fail" #define MSG_SD_INIT_FAIL "SD init fail"

View file

@ -24,6 +24,9 @@
#define MACROS_H #define MACROS_H
#define NUM_AXIS 4 #define NUM_AXIS 4
#define XYZE 4
#define ABC 3
#define XYZ 3
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline

View file

@ -968,7 +968,7 @@ void Planner::check_axes_activity() {
float junction_deviation = 0.1; float junction_deviation = 0.1;
// Compute path unit vector // Compute path unit vector
double unit_vec[3]; double unit_vec[XYZ];
unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters; unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;

View file

@ -122,7 +122,7 @@ unsigned short Stepper::acc_step_rate; // needed for deceleration start point
uint8_t Stepper::step_loops, Stepper::step_loops_nominal; uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
unsigned short Stepper::OCR1A_nominal; unsigned short Stepper::OCR1A_nominal;
volatile long Stepper::endstops_trigsteps[3]; volatile long Stepper::endstops_trigsteps[XYZ];
#if ENABLED(X_DUAL_STEPPER_DRIVERS) #if ENABLED(X_DUAL_STEPPER_DRIVERS)
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0) #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)

View file

@ -128,7 +128,7 @@ class Stepper {
static uint8_t step_loops, step_loops_nominal; static uint8_t step_loops, step_loops_nominal;
static unsigned short OCR1A_nominal; static unsigned short OCR1A_nominal;
static volatile long endstops_trigsteps[3]; static volatile long endstops_trigsteps[XYZ];
static volatile long endstops_stepsTotal, endstops_stepsDone; static volatile long endstops_stepsTotal, endstops_stepsDone;
#if HAS_MOTOR_CURRENT_PWM #if HAS_MOTOR_CURRENT_PWM

View file

@ -95,7 +95,7 @@ unsigned char Temperature::soft_pwm_bed;
#endif #endif
#if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEPPING)
volatile int Temperature::babystepsTodo[3] = { 0 }; volatile int Temperature::babystepsTodo[XYZ] = { 0 };
#endif #endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0

View file

@ -1327,30 +1327,42 @@ void kill_screen(const char* lcd_msg) {
* *
*/ */
static void _lcd_move_xyz(const char* name, AxisEnum axis, float min, float max) { static void _lcd_move_xyz(const char* name, AxisEnum axis) {
if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; } if (LCD_CLICKED) { lcd_goto_previous_menu(true); return; }
ENCODER_DIRECTION_NORMAL(); ENCODER_DIRECTION_NORMAL();
if (encoderPosition) { if (encoderPosition) {
refresh_cmd_timeout(); refresh_cmd_timeout();
// Limit to software endstops, if enabled
float min = (soft_endstops_enabled && min_software_endstops) ? soft_endstop_min[axis] : current_position[axis] - 1000,
max = (soft_endstops_enabled && max_software_endstops) ? soft_endstop_max[axis] : current_position[axis] + 1000;
// Get the new position
current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale; current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale;
if (min_software_endstops) NOLESS(current_position[axis], min);
if (max_software_endstops) NOMORE(current_position[axis], max); // Delta limits XY based on the current offset from center
encoderPosition = 0; // This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z_AXIS) {
max = sqrt(sq(DELTA_PRINTABLE_RADIUS) - sq(current_position[Y_AXIS - axis]));
min = -max;
}
#endif
// Limit only when trying to move towards the limit
if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min);
if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max);
manual_move_to_current(axis); manual_move_to_current(axis);
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW; lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
} }
if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr41sign(current_position[axis])); if (lcdDrawUpdate) lcd_implementation_drawedit(name, ftostr41sign(current_position[axis]));
} }
#if ENABLED(DELTA) static void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS); }
static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS); static void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS); }
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - sq(a)); } static void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS); }
static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
#else
static void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, sw_endstop_min[X_AXIS], sw_endstop_max[X_AXIS]); }
static void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, sw_endstop_min[Y_AXIS], sw_endstop_max[Y_AXIS]); }
#endif
static void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS, sw_endstop_min[Z_AXIS], sw_endstop_max[Z_AXIS]); }
static void _lcd_move_e( static void _lcd_move_e(
#if E_MANUAL > 1 #if E_MANUAL > 1
int8_t eindex=-1 int8_t eindex=-1