🩹 Jerk correction for LIN_ADVANCE + CLASSIC_JERK (#26551)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
This commit is contained in:
parent
342048b1df
commit
3029a6b1aa
|
@ -2490,9 +2490,9 @@ bool Planner::_populate_block(
|
|||
*
|
||||
* extruder_advance_K[extruder] : There is an advance factor set for this extruder.
|
||||
*
|
||||
* dist.e > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
* dm.e : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
*/
|
||||
use_advance_lead = esteps && extruder_advance_K[E_INDEX_N(extruder)] && dist.e > 0;
|
||||
use_advance_lead = esteps && extruder_advance_K[E_INDEX_N(extruder)] && dm.e;
|
||||
|
||||
if (use_advance_lead) {
|
||||
float e_D_ratio = (target_float.e - position_float.e) /
|
||||
|
@ -2770,53 +2770,70 @@ bool Planner::_populate_block(
|
|||
* Heavily modified. Originally adapted from Průša firmware.
|
||||
* https://github.com/prusa3d/Prusa-Firmware
|
||||
*/
|
||||
#ifndef TRAVEL_EXTRA_XYJERK
|
||||
#define TRAVEL_EXTRA_XYJERK 0.0f
|
||||
#if defined(TRAVEL_EXTRA_XYJERK) || ENABLED(LIN_ADVANCE)
|
||||
xyze_float_t max_j = max_jerk;
|
||||
#else
|
||||
const xyze_float_t &max_j = max_jerk;
|
||||
#endif
|
||||
const float extra_xyjerk = TERN0(HAS_EXTRUDERS, dist.e <= 0) ? TRAVEL_EXTRA_XYJERK : 0.0f;
|
||||
|
||||
if (!moves_queued || UNEAR_ZERO(previous_nominal_speed)) {
|
||||
// Compute "safe" speed, limited by a jerk to/from full halt.
|
||||
|
||||
float v_factor = 1.0f;
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
const float jerk = ABS(current_speed[i]), // Starting from zero, change in speed for this axis
|
||||
maxj = max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f); // The max jerk setting for this axis
|
||||
if (jerk * v_factor > maxj) v_factor = maxj / jerk;
|
||||
#ifdef TRAVEL_EXTRA_XYJERK
|
||||
if (dist.e <= 0) {
|
||||
max_j.x += TRAVEL_EXTRA_XYJERK;
|
||||
max_j.y += TRAVEL_EXTRA_XYJERK;
|
||||
}
|
||||
vmax_junction_sqr = sq(block->nominal_speed * v_factor);
|
||||
NOLESS(minimum_planner_speed_sqr, vmax_junction_sqr);
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
// Advance affects E_AXIS speed and therefore jerk. Add a speed correction whenever
|
||||
// LA is turned OFF. No correction is applied when LA is turned ON (because it didn't
|
||||
// perform well; it takes more time/effort to push/melt filament than the reverse).
|
||||
static uint32_t previous_advance_rate;
|
||||
static float previous_e_mm_per_step;
|
||||
if (dist.e < 0 && previous_advance_rate) {
|
||||
// Retract move after a segment with LA that ended with an E speed decrease.
|
||||
// Correct for this to allow a faster junction speed. Since the decrease always helps to
|
||||
// get E to nominal retract speed, the equation simplifies to an increase in max jerk.
|
||||
max_j.e += previous_advance_rate * previous_e_mm_per_step;
|
||||
}
|
||||
// Prepare for next segment.
|
||||
previous_advance_rate = block->la_advance_rate;
|
||||
previous_e_mm_per_step = mm_per_step[E_AXIS_N(extruder)];
|
||||
#endif
|
||||
|
||||
xyze_float_t speed_diff = current_speed;
|
||||
float vmax_junction;
|
||||
const bool start_from_zero = !moves_queued || UNEAR_ZERO(previous_nominal_speed);
|
||||
if (start_from_zero) {
|
||||
// Limited by a jerk to/from full halt.
|
||||
vmax_junction = block->nominal_speed;
|
||||
}
|
||||
else {
|
||||
// Compute the maximum velocity allowed at a joint of two successive segments.
|
||||
|
||||
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
|
||||
float vmax_junction, previous_speed_factor, current_speed_factor;
|
||||
// Scale per-axis velocities for the same vmax_junction.
|
||||
if (block->nominal_speed < previous_nominal_speed) {
|
||||
vmax_junction = block->nominal_speed;
|
||||
previous_speed_factor = vmax_junction / previous_nominal_speed;
|
||||
current_speed_factor = 1.0f;
|
||||
const float previous_scale = vmax_junction / previous_nominal_speed;
|
||||
LOOP_LOGICAL_AXES(i) speed_diff[i] -= previous_speed[i] * previous_scale;
|
||||
}
|
||||
else {
|
||||
vmax_junction = previous_nominal_speed;
|
||||
previous_speed_factor = 1.0f;
|
||||
current_speed_factor = vmax_junction / block->nominal_speed;
|
||||
const float current_scale = vmax_junction / block->nominal_speed;
|
||||
LOOP_LOGICAL_AXES(i) speed_diff[i] = speed_diff[i] * current_scale - previous_speed[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Now limit the jerk in all axes.
|
||||
float v_factor = 1.0f;
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
// Scale per-axis velocities for the same vmax_junction.
|
||||
const float v_exit = previous_speed[i] * previous_speed_factor,
|
||||
v_entry = current_speed[i] * current_speed_factor;
|
||||
|
||||
// Jerk is the per-axis velocity difference.
|
||||
const float jerk = ABS(v_exit - v_entry),
|
||||
maxj = max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f);
|
||||
const float jerk = ABS(speed_diff[i]), maxj = max_j[i];
|
||||
if (jerk * v_factor > maxj) v_factor = maxj / jerk;
|
||||
}
|
||||
vmax_junction_sqr = sq(vmax_junction * v_factor);
|
||||
}
|
||||
|
||||
if (start_from_zero) minimum_planner_speed_sqr = vmax_junction_sqr;
|
||||
|
||||
#endif // CLASSIC_JERK
|
||||
|
||||
|
|
Loading…
Reference in a new issue