More data in UBL class, make it a static class
- Make all `unified_bed_leveling` data/methods static - Move some UBL-related variables into the class - Replace `map_[xy]_index_to_bed_location` with `mesh_index_to_[xy]pos`
This commit is contained in:
parent
edbc024d76
commit
4902fd4e95
|
@ -265,8 +265,8 @@
|
|||
location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
circle_x = ubl.map_x_index_to_bed_location(location.x_index);
|
||||
circle_y = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
circle_x = ubl.mesh_index_to_xpos[location.x_index];
|
||||
circle_y = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
|
||||
#ifdef DELTA
|
||||
|
@ -415,8 +415,8 @@
|
|||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||
if (!is_bit_set(circle_flags, i, j)) {
|
||||
mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
|
||||
my = ubl.map_y_index_to_bed_location(j);
|
||||
mx = ubl.mesh_index_to_xpos[i]; // We found a circle that needs to be printed
|
||||
my = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
dx = X - mx; // Get the distance to this intersection
|
||||
dy = Y - my;
|
||||
|
@ -461,11 +461,11 @@
|
|||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
ex = ubl.map_x_index_to_bed_location(i + 1);
|
||||
ex = ubl.mesh_index_to_xpos[i + 1];
|
||||
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||
ey = sy;
|
||||
|
||||
|
@ -498,12 +498,12 @@
|
|||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||
|
||||
ex = sx;
|
||||
ey = ubl.map_y_index_to_bed_location(j + 1);
|
||||
ey = ubl.mesh_index_to_ypos[j + 1];
|
||||
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
|
|
|
@ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
|
|||
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
|
||||
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
|
||||
|
||||
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
|
||||
bool axis_unhomed_error(const bool x, const bool y, const bool z);
|
||||
#endif
|
||||
|
||||
#endif //MARLIN_H
|
||||
|
|
|
@ -3221,7 +3221,7 @@ inline void gcode_G4() {
|
|||
*/
|
||||
inline void gcode_G12() {
|
||||
// Don't allow nozzle cleaning without homing first
|
||||
if (axis_unhomed_error(true, true, true)) { return; }
|
||||
if (axis_unhomed_error(true, true, true)) return;
|
||||
|
||||
const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
|
||||
strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
|
||||
|
|
452
Marlin/UBL.h
452
Marlin/UBL.h
|
@ -39,7 +39,6 @@
|
|||
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
|
||||
bool axis_unhomed_error(bool, bool, bool);
|
||||
void dump(char * const str, const float &f);
|
||||
bool ubl_lcd_clicked();
|
||||
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
|
||||
|
@ -78,275 +77,273 @@
|
|||
|
||||
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
|
||||
|
||||
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
|
||||
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
|
||||
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
|
||||
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
|
||||
|
||||
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
typedef struct {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int8_t eeprom_storage_slot = -1,
|
||||
n_x = UBL_MESH_NUM_X_POINTS,
|
||||
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||
|
||||
float mesh_x_min = UBL_MESH_MIN_X,
|
||||
mesh_y_min = UBL_MESH_MIN_Y,
|
||||
mesh_x_max = UBL_MESH_MAX_X,
|
||||
mesh_y_max = UBL_MESH_MAX_Y,
|
||||
mesh_x_dist = MESH_X_DIST,
|
||||
mesh_y_dist = MESH_Y_DIST;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
|
||||
// so keep this value and its reciprocal.
|
||||
#else
|
||||
const float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0;
|
||||
#endif
|
||||
|
||||
// If you change this struct, adjust TOTAL_STRUCT_SIZE
|
||||
|
||||
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
|
||||
|
||||
// padding provides space to add state variables without
|
||||
// changing the location of data structures in the EEPROM.
|
||||
// This is for compatibility with future versions to keep
|
||||
// users from having to regenerate their mesh data.
|
||||
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
|
||||
|
||||
} ubl_state;
|
||||
|
||||
class unified_bed_leveling {
|
||||
private:
|
||||
|
||||
float last_specified_z,
|
||||
fade_scaling_factor_for_current_height;
|
||||
static float last_specified_z,
|
||||
fade_scaling_factor_for_current_height;
|
||||
|
||||
public:
|
||||
|
||||
float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||
static ubl_state state, pre_initialized;
|
||||
|
||||
bool g26_debug_flag = false,
|
||||
has_control_of_lcd_panel = false;
|
||||
static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
|
||||
mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
|
||||
|
||||
int8_t eeprom_start = -1;
|
||||
static bool g26_debug_flag,
|
||||
has_control_of_lcd_panel;
|
||||
|
||||
volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
static int8_t eeprom_start;
|
||||
|
||||
struct ubl_state {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int8_t eeprom_storage_slot = -1,
|
||||
n_x = UBL_MESH_NUM_X_POINTS,
|
||||
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
|
||||
float mesh_x_min = UBL_MESH_MIN_X,
|
||||
mesh_y_min = UBL_MESH_MIN_Y,
|
||||
mesh_x_max = UBL_MESH_MAX_X,
|
||||
mesh_y_max = UBL_MESH_MAX_Y,
|
||||
mesh_x_dist = MESH_X_DIST,
|
||||
mesh_y_dist = MESH_Y_DIST;
|
||||
unified_bed_leveling();
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
|
||||
// so keep this value and its reciprocal.
|
||||
#else
|
||||
const float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0;
|
||||
#endif
|
||||
static void display_map(const int);
|
||||
|
||||
// If you change this struct, adjust TOTAL_STRUCT_SIZE
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
|
||||
#define TOTAL_STRUCT_SIZE 43 // Total size of the above fields
|
||||
static void store_state();
|
||||
static void load_state();
|
||||
static void store_mesh(const int16_t);
|
||||
static void load_mesh(const int16_t);
|
||||
|
||||
// padding provides space to add state variables without
|
||||
// changing the location of data structures in the EEPROM.
|
||||
// This is for compatibility with future versions to keep
|
||||
// users from having to regenerate their mesh data.
|
||||
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
|
||||
static bool sanity_check();
|
||||
|
||||
} state, pre_initialized;
|
||||
static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
unified_bed_leveling();
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
void display_map(const int);
|
||||
|
||||
void reset();
|
||||
void invalidate();
|
||||
|
||||
void store_state();
|
||||
void load_state();
|
||||
void store_mesh(const int16_t);
|
||||
void load_mesh(const int16_t);
|
||||
|
||||
bool sanity_check();
|
||||
|
||||
FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
|
||||
FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
|
||||
|
||||
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||
}
|
||||
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1),
|
||||
delta_a = (a0 - a1) / (a2 - a1);
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
|
||||
/**
|
||||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||
* point operations.
|
||||
*/
|
||||
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
|
||||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + xratio * dz;
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||
//
|
||||
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
|
||||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + yratio * dz;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
float get_z_correction(const float &x0, const float &y0) const {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(y0));
|
||||
|
||||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||
SERIAL_ECHOPAIR(", y0=", y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return 0.0; // this used to return state.z_offset
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1),
|
||||
delta_a = (a0 - a1) / (a2 - a1);
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(x0),
|
||||
map_x_index_to_bed_location(cx), z_values[cx][cy],
|
||||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(RAW_X_POSITION(x0),
|
||||
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
|
||||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
|
||||
float z0 = calc_z0(RAW_Y_POSITION(y0),
|
||||
map_y_index_to_bed_location(cy), z1,
|
||||
map_y_index_to_bed_location(cy + 1), z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_CHAR(',')
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
/**
|
||||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||
* point operations.
|
||||
*/
|
||||
static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
|
||||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + xratio * dz;
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||
//
|
||||
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
|
||||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + yratio * dz;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &x0, const float &y0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(y0));
|
||||
|
||||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||
SERIAL_ECHOPAIR(", y0=", y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return 0.0; // this used to return state.z_offset
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(x0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(RAW_X_POSITION(x0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
|
||||
float z0 = calc_z0(RAW_Y_POSITION(y0),
|
||||
mesh_index_to_ypos[cy], z1,
|
||||
mesh_index_to_ypos[cy + 1], z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_CHAR(',')
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
}
|
||||
|
||||
/**
|
||||
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||
* returns it.
|
||||
*
|
||||
* It returns a scaling factor of 1.0 if UBL is inactive.
|
||||
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor_for_current_height =
|
||||
state.active && rz < state.g29_correction_fade_height
|
||||
? 1.0 - (rz * state.g29_fade_height_multiplier)
|
||||
: 0.0;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return fade_scaling_factor_for_current_height;
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
}
|
||||
|
||||
#else
|
||||
/**
|
||||
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||
* returns it.
|
||||
*
|
||||
* It returns a scaling factor of 1.0 if UBL is inactive.
|
||||
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor_for_current_height =
|
||||
state.active && rz < state.g29_correction_fade_height
|
||||
? 1.0 - (rz * state.g29_fade_height_multiplier)
|
||||
: 0.0;
|
||||
}
|
||||
return fade_scaling_factor_for_current_height;
|
||||
}
|
||||
|
||||
#endif
|
||||
#else
|
||||
|
||||
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
|
||||
|
||||
#endif
|
||||
|
||||
}; // class unified_bed_leveling
|
||||
|
||||
|
@ -355,5 +352,4 @@
|
|||
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
||||
|
|
|
@ -57,23 +57,26 @@
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* These variables used to be declared inside the unified_bed_leveling class. We are going to
|
||||
* still declare them within the .cpp file for bed leveling. But there is only one instance of
|
||||
* the bed leveling object and we can get rid of a level of inderection by not making them
|
||||
* 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be
|
||||
* moved back inside the bed leveling class.
|
||||
*/
|
||||
float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||
mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
|
||||
|
||||
float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
unified_bed_leveling::last_specified_z,
|
||||
unified_bed_leveling::fade_scaling_factor_for_current_height,
|
||||
unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
|
||||
unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
|
||||
|
||||
bool unified_bed_leveling::g26_debug_flag = false,
|
||||
unified_bed_leveling::has_control_of_lcd_panel = false;
|
||||
|
||||
int8_t unified_bed_leveling::eeprom_start = -1;
|
||||
|
||||
volatile int unified_bed_leveling::encoder_diff;
|
||||
|
||||
unified_bed_leveling::unified_bed_leveling() {
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||
|
||||
for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
|
||||
mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
|
||||
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
|
||||
mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
|
||||
reset();
|
||||
}
|
||||
|
||||
|
@ -161,9 +164,6 @@
|
|||
}
|
||||
|
||||
void unified_bed_leveling::invalidate() {
|
||||
print_hex_word((uint16_t)this);
|
||||
SERIAL_EOL;
|
||||
|
||||
state.active = false;
|
||||
state.z_offset = 0;
|
||||
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
|
|
|
@ -750,8 +750,8 @@
|
|||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
|
||||
|
@ -900,8 +900,8 @@
|
|||
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
||||
if (location.x_index < 0 && location.y_index < 0) continue;
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
|
||||
|
@ -1137,7 +1137,7 @@
|
|||
|
||||
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
||||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1);
|
||||
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
safe_delay(50);
|
||||
}
|
||||
|
@ -1145,7 +1145,7 @@
|
|||
|
||||
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
||||
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
|
||||
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1);
|
||||
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
safe_delay(50);
|
||||
}
|
||||
|
@ -1283,8 +1283,8 @@
|
|||
|
||||
// We only get here if we found a Mesh Point of the specified type
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
|
||||
rawy = ubl.map_y_index_to_bed_location(j);
|
||||
const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
|
||||
rawy = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
// If using the probe as the reference there are some unreachable locations.
|
||||
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
||||
|
@ -1350,8 +1350,8 @@
|
|||
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
||||
// different location the next time through the loop
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
|
||||
|
|
|
@ -167,16 +167,16 @@
|
|||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
*/
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
|
||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
|
||||
float z0 = z1 + (z2 - z1) * yratio;
|
||||
|
||||
|
@ -274,7 +274,7 @@
|
|||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||
while (current_yi != cell_dest_yi + down_flag) {
|
||||
current_yi += dyi;
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
|
||||
|
||||
/**
|
||||
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
|
||||
|
@ -316,7 +316,7 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
|
||||
const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -365,7 +365,7 @@
|
|||
// edge of this cell for the first move.
|
||||
while (current_xi != cell_dest_xi + left_flag) {
|
||||
current_xi += dxi;
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
|
||||
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||
|
||||
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||
|
@ -401,7 +401,7 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]);
|
||||
const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -451,8 +451,8 @@
|
|||
|
||||
while (xi_cnt > 0 || yi_cnt > 0) {
|
||||
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
|
||||
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||
// about m being equal to 0.0 If this was the case, we would have
|
||||
|
|
Loading…
Reference in a new issue