Merge branch 'Development' into marlin_configurator
Latest upstream changes
This commit is contained in:
commit
4b50205f11
|
@ -362,6 +362,15 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
|
||||
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
|
||||
|
||||
//===========================================================================
|
||||
//============================= Filament Runout Sensor ======================
|
||||
//===========================================================================
|
||||
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
|
||||
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
|
||||
// It is assumed that when logic high = filament available
|
||||
// when logic low = filament ran out
|
||||
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
|
||||
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
|
||||
|
||||
//===========================================================================
|
||||
//============================= Bed Auto Leveling ===========================
|
||||
|
|
|
@ -32,6 +32,9 @@
|
|||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
#define BIT(b) (1<<(b))
|
||||
#define TEST(n,b) ((n)&BIT(b)!=0)
|
||||
|
||||
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||
#ifndef analogInputToDigitalPin
|
||||
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
||||
|
@ -199,6 +202,10 @@ void prepare_move();
|
|||
void kill();
|
||||
void Stop();
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
void filrunout();
|
||||
#endif
|
||||
|
||||
bool IsStopped();
|
||||
|
||||
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
|
||||
|
|
|
@ -47,7 +47,7 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
|
|
|
@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
|
|||
#endif
|
||||
|
||||
if (useU2X) {
|
||||
M_UCSRxA = 1 << M_U2Xx;
|
||||
M_UCSRxA = BIT(M_U2Xx);
|
||||
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
||||
} else {
|
||||
M_UCSRxA = 0;
|
||||
|
|
|
@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
|
|||
}
|
||||
|
||||
FORCE_INLINE void write(uint8_t c) {
|
||||
while (!((M_UCSRxA) & (1 << M_UDREx)))
|
||||
while (!TEST(M_UCSRxA, M_UDREx))
|
||||
;
|
||||
|
||||
M_UDRx = c;
|
||||
}
|
||||
|
||||
FORCE_INLINE void checkRx(void) {
|
||||
if ((M_UCSRxA & (1<<M_RXCx)) != 0) {
|
||||
if (TEST(M_UCSRxA, M_RXCx)) {
|
||||
unsigned char c = M_UDRx;
|
||||
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@
|
|||
#include "Servo.h"
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
|
@ -370,6 +370,10 @@ bool cancel_heatup = false;
|
|||
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
static bool filrunoutEnqued = false;
|
||||
#endif
|
||||
|
||||
const char errormagic[] PROGMEM = "Error:";
|
||||
const char echomagic[] PROGMEM = "echo:";
|
||||
|
||||
|
@ -529,6 +533,16 @@ void setup_killpin()
|
|||
#endif
|
||||
}
|
||||
|
||||
void setup_filrunoutpin()
|
||||
{
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
pinMode(FILRUNOUT_PIN,INPUT);
|
||||
#if defined(ENDSTOPPULLUP_FIL_RUNOUT)
|
||||
WRITE(FILLRUNOUT_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// Set home pin
|
||||
void setup_homepin(void)
|
||||
{
|
||||
|
@ -605,6 +619,7 @@ void servo_init()
|
|||
void setup()
|
||||
{
|
||||
setup_killpin();
|
||||
setup_filrunoutpin();
|
||||
setup_powerhold();
|
||||
MYSERIAL.begin(BAUDRATE);
|
||||
SERIAL_PROTOCOLLNPGM("start");
|
||||
|
@ -2015,14 +2030,15 @@ inline void gcode_G28() {
|
|||
|
||||
if (verbose_level) {
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
||||
SERIAL_PROTOCOLPGM(" b: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
||||
SERIAL_PROTOCOLPGM(" d: ");
|
||||
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
||||
SERIAL_EOL;
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOL_F(mean, 8);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
@ -2033,15 +2049,20 @@ inline void gcode_G28() {
|
|||
|
||||
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
||||
#if TOPO_ORIGIN == OriginFrontLeft
|
||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
||||
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
||||
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
||||
#else
|
||||
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
||||
#endif
|
||||
{
|
||||
#if TOPO_ORIGIN == OriginBackRight
|
||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||
#else
|
||||
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
||||
#else
|
||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||
#endif
|
||||
{
|
||||
int ind =
|
||||
|
@ -4130,6 +4151,11 @@ inline void gcode_M503() {
|
|||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
filrunoutEnqued = false;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#endif // FILAMENTCHANGEENABLE
|
||||
|
@ -4184,7 +4210,7 @@ inline void gcode_M503() {
|
|||
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||
*/
|
||||
inline void gcode_M907() {
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
for (int i=0;i<NUM_AXIS;i++)
|
||||
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
||||
if (code_seen('B')) digipot_current(4, code_value());
|
||||
|
@ -4207,7 +4233,7 @@ inline void gcode_M907() {
|
|||
#endif
|
||||
}
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
|
||||
/**
|
||||
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||
|
@ -4219,7 +4245,7 @@ inline void gcode_M907() {
|
|||
);
|
||||
}
|
||||
|
||||
#endif // DIGIPOTSS_PIN
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
|
@ -4806,11 +4832,11 @@ void process_commands() {
|
|||
gcode_M907();
|
||||
break;
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
case 908: // M908 Control digital trimpot directly.
|
||||
gcode_M908();
|
||||
break;
|
||||
#endif // DIGIPOTSS_PIN
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
gcode_M350();
|
||||
|
@ -5269,6 +5295,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
const int KILL_DELAY = 10000;
|
||||
#endif
|
||||
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
if(card.sdprinting) {
|
||||
if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
|
||||
filrunout(); }
|
||||
#endif
|
||||
|
||||
#if defined(HOME_PIN) && HOME_PIN > -1
|
||||
static int homeDebounceCount = 0; // poor man's debouncing count
|
||||
const int HOME_DEBOUNCE_DELAY = 10000;
|
||||
|
@ -5417,6 +5449,16 @@ void kill()
|
|||
while(1) { /* Intentionally left empty */ } // Wait for reset
|
||||
}
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
void filrunout()
|
||||
{
|
||||
if filrunoutEnqued == false {
|
||||
filrunoutEnqued = true;
|
||||
enquecommand("M600");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void Stop()
|
||||
{
|
||||
disable_heater();
|
||||
|
|
|
@ -35,14 +35,14 @@
|
|||
*/
|
||||
static void spiInit(uint8_t spiRate) {
|
||||
// See avr processor documentation
|
||||
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
||||
SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI receive a byte */
|
||||
static uint8_t spiRec() {
|
||||
SPDR = 0XFF;
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
return SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
|
|||
if (nbyte-- == 0) return;
|
||||
SPDR = 0XFF;
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
buf[i] = SPDR;
|
||||
SPDR = 0XFF;
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
buf[nbyte] = SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send a byte */
|
||||
static void spiSend(uint8_t b) {
|
||||
SPDR = b;
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send block - only one call so force inline */
|
||||
|
@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
|
|||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
SPDR = token;
|
||||
for (uint16_t i = 0; i < 512; i += 2) {
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
SPDR = buf[i];
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
SPDR = buf[i + 1];
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
#else // SOFTWARE_SPI
|
||||
|
|
|
@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
|
|||
void setPinMode(uint8_t pin, uint8_t mode) {
|
||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||
if (mode) {
|
||||
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
|
||||
*digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
|
||||
} else {
|
||||
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
|
||||
*digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
|
||||
}
|
||||
} else {
|
||||
badPinNumber();
|
||||
|
@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
|
|||
void fastDigitalWrite(uint8_t pin, uint8_t value) {
|
||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||
if (value) {
|
||||
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
|
||||
*digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
|
||||
} else {
|
||||
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
|
||||
*digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
|
||||
}
|
||||
} else {
|
||||
badPinNumber();
|
||||
|
|
|
@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
|
|||
return 2*(fatTime & 0X1F);
|
||||
}
|
||||
/** Default date for file timestamps is 1 Jan 2000 */
|
||||
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
|
||||
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
|
||||
/** Default time for file timestamp is 1 am */
|
||||
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
|
||||
uint16_t const FAT_DEFAULT_TIME = BIT(11);
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* \class SdBaseFile
|
||||
|
|
|
@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
|
|||
blocksPerCluster_ = fbs->sectorsPerCluster;
|
||||
// determine shift that is same as multiply by blocksPerCluster_
|
||||
clusterSizeShift_ = 0;
|
||||
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
|
||||
while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
|
||||
// error if not power of 2
|
||||
if (clusterSizeShift_++ > 7) goto fail;
|
||||
}
|
||||
|
|
|
@ -24,9 +24,9 @@
|
|||
#define BLEN_A 0
|
||||
#define BLEN_B 1
|
||||
#define BLEN_C 2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#endif
|
||||
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
*/
|
||||
|
||||
#ifndef MASK
|
||||
/// MASKING- returns \f$2^PIN\f$
|
||||
#define MASK(PIN) (1 << PIN)
|
||||
#endif
|
||||
|
||||
|
|
|
@ -184,4 +184,6 @@
|
|||
analogInputToDigitalPin(TEMP_BED_PIN) \
|
||||
}
|
||||
|
||||
#define HAS_DIGIPOTSS (DIGIPOTSS_PIN >= 0)
|
||||
|
||||
#endif //__PINS_H
|
||||
|
|
|
@ -61,6 +61,11 @@
|
|||
#define FILWIDTH_PIN 5
|
||||
#endif
|
||||
|
||||
#if defined(FILAMENT_RUNOUT_SENSOR)
|
||||
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
|
||||
#define FILRUNOUT_PIN 4
|
||||
#endif
|
||||
|
||||
#if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF)
|
||||
#define FAN_PIN 9 // (Sprinter config)
|
||||
#if MB(RAMPS_13_EFF)
|
||||
|
|
|
@ -623,37 +623,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
|||
#ifndef COREXY
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
block->direction_bits |= BIT(X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
block->direction_bits |= BIT(Y_AXIS);
|
||||
}
|
||||
#else
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
||||
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
||||
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
||||
}
|
||||
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
||||
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
||||
}
|
||||
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
||||
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
||||
}
|
||||
#endif
|
||||
if (target[Z_AXIS] < position[Z_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
block->direction_bits |= BIT(Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
block->direction_bits |= BIT(E_AXIS);
|
||||
}
|
||||
|
||||
block->active_extruder = extruder;
|
||||
|
@ -864,7 +864,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||
old_direction_bits = block->direction_bits;
|
||||
segment_time = lround((float)segment_time / speed_factor);
|
||||
|
||||
if((direction_change & (1<<X_AXIS)) == 0)
|
||||
if((direction_change & BIT(X_AXIS)) == 0)
|
||||
{
|
||||
x_segment_time[0] += segment_time;
|
||||
}
|
||||
|
@ -874,7 +874,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||
x_segment_time[1] = x_segment_time[0];
|
||||
x_segment_time[0] = segment_time;
|
||||
}
|
||||
if((direction_change & (1<<Y_AXIS)) == 0)
|
||||
if((direction_change & BIT(Y_AXIS)) == 0)
|
||||
{
|
||||
y_segment_time[0] += segment_time;
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -25,26 +25,26 @@
|
|||
#include "stepper_indirection.h"
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
|
||||
#elif EXTRUDERS > 2
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
|
||||
#elif EXTRUDERS > 1
|
||||
#ifndef DUAL_X_CARRIAGE
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||
#else
|
||||
extern bool extruder_duplication_enabled;
|
||||
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||
#endif
|
||||
#else
|
||||
#define WRITE_E_STEP(v) E0_STEP_WRITE(v)
|
||||
#define E_STEP_WRITE(v) E0_STEP_WRITE(v)
|
||||
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
|
||||
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
|
||||
#endif
|
||||
|
|
|
@ -75,6 +75,10 @@
|
|||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
|
||||
#ifdef K1 // Defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
#endif
|
||||
|
||||
// Sampling period of the temperature routine
|
||||
#ifdef PID_dT
|
||||
#undef PID_dT
|
||||
|
@ -127,8 +131,6 @@ static volatile bool temp_meas_ready = false;
|
|||
static float pid_error[EXTRUDERS];
|
||||
static float temp_iState_min[EXTRUDERS];
|
||||
static float temp_iState_max[EXTRUDERS];
|
||||
// static float pid_input[EXTRUDERS];
|
||||
// static float pid_output[EXTRUDERS];
|
||||
static bool pid_reset[EXTRUDERS];
|
||||
#endif //PIDTEMP
|
||||
#ifdef PIDTEMPBED
|
||||
|
@ -546,12 +548,102 @@ void bed_max_temp_error(void) {
|
|||
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED);
|
||||
}
|
||||
|
||||
float get_pid_output(int e) {
|
||||
float pid_output;
|
||||
#ifdef PIDTEMP
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error[e] = target_temperature[e] - current_temperature[e];
|
||||
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
pid_output = BANG_MAX;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
pid_output = 0;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else {
|
||||
if (pid_reset[e]) {
|
||||
temp_iState[e] = 0.0;
|
||||
pid_reset[e] = false;
|
||||
}
|
||||
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
|
||||
temp_iState[e] += pid_error[e];
|
||||
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
||||
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
|
||||
|
||||
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
|
||||
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
||||
if (pid_output > PID_MAX) {
|
||||
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
}
|
||||
temp_dState[e] = current_temperature[e];
|
||||
#else
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_PID_DEBUG);
|
||||
SERIAL_ECHO(e);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
|
||||
SERIAL_ECHO(current_temperature[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
|
||||
SERIAL_ECHO(pid_output);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
|
||||
SERIAL_ECHO(pTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
|
||||
SERIAL_ECHO(iTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
|
||||
SERIAL_ECHOLN(dTerm[e]);
|
||||
#endif //PID_DEBUG
|
||||
|
||||
#else /* PID off */
|
||||
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
|
||||
#endif
|
||||
|
||||
return pid_output;
|
||||
}
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
float get_pid_output_bed() {
|
||||
float pid_output;
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error_bed = target_temperature_bed - current_temperature_bed;
|
||||
pTerm_bed = bedKp * pid_error_bed;
|
||||
temp_iState_bed += pid_error_bed;
|
||||
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
||||
iTerm_bed = bedKi * temp_iState_bed;
|
||||
|
||||
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
|
||||
temp_dState_bed = current_temperature_bed;
|
||||
|
||||
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||||
if (pid_output > MAX_BED_POWER) {
|
||||
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = MAX_BED_POWER;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
#else
|
||||
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||||
#endif // PID_OPENLOOP
|
||||
|
||||
return pid_output;
|
||||
}
|
||||
#endif
|
||||
|
||||
void manage_heater() {
|
||||
|
||||
if (!temp_meas_ready) return;
|
||||
|
||||
float pid_input, pid_output;
|
||||
|
||||
updateTemperaturesFromRawValues();
|
||||
|
||||
#ifdef HEATER_0_USES_MAX6675
|
||||
|
@ -569,69 +661,7 @@ void manage_heater() {
|
|||
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMP
|
||||
pid_input = current_temperature[e];
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error[e] = target_temperature[e] - pid_input;
|
||||
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
pid_output = BANG_MAX;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
pid_output = 0;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else {
|
||||
if (pid_reset[e] == true) {
|
||||
temp_iState[e] = 0.0;
|
||||
pid_reset[e] = false;
|
||||
}
|
||||
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
|
||||
temp_iState[e] += pid_error[e];
|
||||
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
||||
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
|
||||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]);
|
||||
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
||||
if (pid_output > PID_MAX) {
|
||||
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
}
|
||||
temp_dState[e] = pid_input;
|
||||
#else
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_PID_DEBUG);
|
||||
SERIAL_ECHO(e);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
|
||||
SERIAL_ECHO(pid_input);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
|
||||
SERIAL_ECHO(pid_output);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
|
||||
SERIAL_ECHO(pTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
|
||||
SERIAL_ECHO(iTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
|
||||
SERIAL_ECHOLN(dTerm[e]);
|
||||
#endif //PID_DEBUG
|
||||
|
||||
#else /* PID off */
|
||||
|
||||
pid_output = 0;
|
||||
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX;
|
||||
|
||||
#endif
|
||||
float pid_output = get_pid_output(e);
|
||||
|
||||
// Check if temperature is within the correct range
|
||||
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
|
||||
|
@ -678,33 +708,7 @@ void manage_heater() {
|
|||
#endif
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
pid_input = current_temperature_bed;
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error_bed = target_temperature_bed - pid_input;
|
||||
pTerm_bed = bedKp * pid_error_bed;
|
||||
temp_iState_bed += pid_error_bed;
|
||||
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
||||
iTerm_bed = bedKi * temp_iState_bed;
|
||||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
||||
temp_dState_bed = pid_input;
|
||||
|
||||
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||||
if (pid_output > MAX_BED_POWER) {
|
||||
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = MAX_BED_POWER;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
|
||||
#else
|
||||
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||||
#endif //PID_OPENLOOP
|
||||
float pid_output = get_pid_output_bed();
|
||||
|
||||
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
|
||||
|
||||
|
@ -878,8 +882,8 @@ void tp_init()
|
|||
{
|
||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
||||
MCUCR=(1<<JTD);
|
||||
MCUCR=(1<<JTD);
|
||||
MCUCR=BIT(JTD);
|
||||
MCUCR=BIT(JTD);
|
||||
#endif
|
||||
|
||||
// Finish init of mult extruder arrays
|
||||
|
@ -937,13 +941,13 @@ void tp_init()
|
|||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
#ifdef DIDR2
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
|
||||
#else
|
||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
|
||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
|
||||
#endif
|
||||
|
||||
// Set analog inputs
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
|
||||
DIDR0 = 0;
|
||||
#ifdef DIDR2
|
||||
DIDR2 = 0;
|
||||
|
@ -970,7 +974,7 @@ void tp_init()
|
|||
// Use timer0 for temperature measurement
|
||||
// Interleave temperature interrupt with millies interrupt
|
||||
OCR0B = 128;
|
||||
TIMSK0 |= (1<<OCIE0B);
|
||||
TIMSK0 |= BIT(OCIE0B);
|
||||
|
||||
// Wait for temperature measurement to settle
|
||||
delay(250);
|
||||
|
@ -1174,12 +1178,12 @@ void disable_heater() {
|
|||
max6675_temp = 0;
|
||||
|
||||
#ifdef PRR
|
||||
PRR &= ~(1<<PRSPI);
|
||||
PRR &= ~BIT(PRSPI);
|
||||
#elif defined(PRR0)
|
||||
PRR0 &= ~(1<<PRSPI);
|
||||
PRR0 &= ~BIT(PRSPI);
|
||||
#endif
|
||||
|
||||
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
||||
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
|
||||
|
||||
// enable TT_MAX6675
|
||||
WRITE(MAX6675_SS, 0);
|
||||
|
@ -1190,13 +1194,13 @@ void disable_heater() {
|
|||
|
||||
// read MSB
|
||||
SPDR = 0;
|
||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
||||
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||
max6675_temp = SPDR;
|
||||
max6675_temp <<= 8;
|
||||
|
||||
// read LSB
|
||||
SPDR = 0;
|
||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
||||
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||
max6675_temp |= SPDR;
|
||||
|
||||
// disable TT_MAX6675
|
||||
|
@ -1246,7 +1250,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
static unsigned long raw_temp_3_value = 0;
|
||||
static unsigned long raw_temp_bed_value = 0;
|
||||
static TempState temp_state = StartupDelay;
|
||||
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
||||
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
|
||||
|
||||
// Static members for each heater
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
|
@ -1331,7 +1335,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||
#endif
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
||||
#else // SLOW_PWM_HEATERS
|
||||
|
@ -1412,7 +1416,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||
#endif //FAN_SOFT_PWM
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
||||
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
||||
|
@ -1438,9 +1442,9 @@ ISR(TIMER0_COMPB_vect) {
|
|||
|
||||
#endif // SLOW_PWM_HEATERS
|
||||
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
|
||||
#ifdef MUX5
|
||||
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#else
|
||||
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#endif
|
||||
|
|
|
@ -1426,7 +1426,7 @@ void lcd_buttons_update() {
|
|||
WRITE(SHIFT_LD, HIGH);
|
||||
for(int8_t i = 0; i < 8; i++) {
|
||||
newbutton_reprapworld_keypad >>= 1;
|
||||
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7);
|
||||
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
|
||||
WRITE(SHIFT_CLK, HIGH);
|
||||
WRITE(SHIFT_CLK, LOW);
|
||||
}
|
||||
|
@ -1439,7 +1439,7 @@ void lcd_buttons_update() {
|
|||
unsigned char tmp_buttons = 0;
|
||||
for(int8_t i=0; i<8; i++) {
|
||||
newbutton >>= 1;
|
||||
if (READ(SHIFT_OUT)) newbutton |= (1 << 7);
|
||||
if (READ(SHIFT_OUT)) newbutton |= BIT(7);
|
||||
WRITE(SHIFT_CLK, HIGH);
|
||||
WRITE(SHIFT_CLK, LOW);
|
||||
}
|
||||
|
|
|
@ -57,20 +57,20 @@
|
|||
void lcd_ignore_click(bool b=true);
|
||||
|
||||
#ifdef NEWPANEL
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#ifdef REPRAPWORLD_KEYPAD
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||
|
||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
|
||||
|
@ -83,14 +83,14 @@
|
|||
#endif //REPRAPWORLD_KEYPAD
|
||||
#else
|
||||
//atomic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
#define B_DW (1<<BL_DW)
|
||||
#define B_RI (1<<BL_RI)
|
||||
#define B_ST (1<<BL_ST)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define B_LE BIT(BL_LE)
|
||||
#define B_UP BIT(BL_UP)
|
||||
#define B_MI BIT(BL_MI)
|
||||
#define B_DW BIT(BL_DW)
|
||||
#define B_RI BIT(BL_RI)
|
||||
#define B_ST BIT(BL_ST)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||
#endif//NEWPANEL
|
||||
|
|
|
@ -24,13 +24,13 @@
|
|||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#if defined(BTN_ENC) && BTN_ENC > -1
|
||||
// encoder click is directly connected
|
||||
#define BLEN_C 2
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#endif
|
||||
|
||||
//
|
||||
|
@ -85,14 +85,14 @@
|
|||
|
||||
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
|
||||
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
||||
|
||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
|
@ -113,12 +113,12 @@
|
|||
#define BL_ST 2
|
||||
|
||||
//automatic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
#define B_DW (1<<BL_DW)
|
||||
#define B_RI (1<<BL_RI)
|
||||
#define B_ST (1<<BL_ST)
|
||||
#define B_LE BIT(BL_LE)
|
||||
#define B_UP BIT(BL_UP)
|
||||
#define B_MI BIT(BL_MI)
|
||||
#define B_DW BIT(BL_DW)
|
||||
#define B_RI BIT(BL_RI)
|
||||
#define B_ST BIT(BL_ST)
|
||||
|
||||
#define LCD_CLICKED (buttons&(B_MI|B_ST))
|
||||
#endif
|
||||
|
|
|
@ -27,9 +27,15 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val)
|
|||
for( i=0; i<8; i++ )
|
||||
{
|
||||
WRITE(ST7920_CLK_PIN,0);
|
||||
#if F_CPU == 20000000
|
||||
__asm__("nop\n\t");
|
||||
#endif
|
||||
WRITE(ST7920_DAT_PIN,val&0x80);
|
||||
val<<=1;
|
||||
WRITE(ST7920_CLK_PIN,1);
|
||||
#if F_CPU == 20000000
|
||||
__asm__("nop\n\t""nop\n\t");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -79,11 +79,11 @@ void vector_3::debug(char* title)
|
|||
{
|
||||
SERIAL_PROTOCOL(title);
|
||||
SERIAL_PROTOCOLPGM(" x: ");
|
||||
SERIAL_PROTOCOL(x);
|
||||
SERIAL_PROTOCOL_F(x, 6);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(y);
|
||||
SERIAL_PROTOCOL_F(y, 6);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(z);
|
||||
SERIAL_PROTOCOL_F(z, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
|
@ -150,7 +150,7 @@ void matrix_3x3::debug(char* title) {
|
|||
int count = 0;
|
||||
for(int i=0; i<3; i++) {
|
||||
for(int j=0; j<3; j++) {
|
||||
SERIAL_PROTOCOL(matrix[count] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(matrix[count], 6);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
count++;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue