diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 9cd13c90ee..1db06e9bc2 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -216,7 +216,7 @@ void manage_inactivity(bool ignore_stepper_queue = false); */ enum AxisEnum {X_AXIS = 0, A_AXIS = 0, Y_AXIS = 1, B_AXIS = 1, Z_AXIS = 2, C_AXIS = 2, E_AXIS = 3, X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 5}; -enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8}; +#define _AXIS(AXIS) AXIS ##_AXIS void enable_all_steppers(); void disable_all_steppers(); diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 37c472f3ca..7cc7c028c8 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -48,6 +48,7 @@ #include "ultralcd.h" #include "planner.h" #include "stepper.h" +#include "endstops.h" #include "temperature.h" #include "cardreader.h" #include "configuration_store.h" @@ -547,10 +548,6 @@ static void report_current_position(); float extrude_min_temp = EXTRUDE_MINTEMP; #endif -#if ENABLED(HAS_Z_MIN_PROBE) - extern volatile bool z_probe_is_active; -#endif - #if ENABLED(SDSUPPORT) #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } @@ -711,7 +708,7 @@ void servo_init() { #if HAS_SERVO_ENDSTOPS - z_probe_is_active = false; + endstops.enable_z_probe(false); /** * Set position of all defined Servo Endstops @@ -831,7 +828,7 @@ void setup() { watchdog_init(); #endif - st_init(); // Initialize stepper, this enables interrupts! + stepper.init(); // Initialize stepper, this enables interrupts! setup_photpin(); servo_init(); @@ -915,7 +912,7 @@ void loop() { commands_in_queue--; cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE; } - checkHitEndstops(); + endstops.report_state(); idle(); } @@ -1445,9 +1442,9 @@ static void setup_for_endstop_move() { feedrate_multiplier = 100; refresh_cmd_timeout(); #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()"); #endif - enable_endstops(true); + endstops.enable(); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) @@ -1553,7 +1550,7 @@ static void setup_for_endstop_move() { #if ENABLED(DELTA) float start_z = current_position[Z_AXIS]; - long start_steps = st_get_position(Z_AXIS); + long start_steps = stepper.position(Z_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1"); @@ -1563,14 +1560,14 @@ static void setup_for_endstop_move() { feedrate = homing_feedrate[Z_AXIS] / 4; destination[Z_AXIS] = -10; prepare_move_raw(); // this will also set_current_to_destination - st_synchronize(); - endstops_hit_on_purpose(); // clear endstop hit flags + stepper.synchronize(); + endstops.hit_on_purpose(); // clear endstop hit flags /** * We have to let the planner know where we are right now as it * is not where we said to go. */ - long stop_steps = st_get_position(Z_AXIS); + long stop_steps = stepper.position(Z_AXIS); float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; current_position[Z_AXIS] = mm; @@ -1588,10 +1585,10 @@ static void setup_for_endstop_move() { // Move down until the Z probe (or endstop?) is triggered float zPosition = -(Z_MAX_LENGTH + 10); line_to_z(zPosition); - st_synchronize(); + stepper.synchronize(); // Tell the planner where we ended up - Get this from the stepper handler - zPosition = st_get_axis_position_mm(Z_AXIS); + zPosition = stepper.get_axis_position_mm(Z_AXIS); plan_set_position( current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS] @@ -1600,19 +1597,19 @@ static void setup_for_endstop_move() { // move up the retract distance zPosition += home_bump_mm(Z_AXIS); line_to_z(zPosition); - st_synchronize(); - endstops_hit_on_purpose(); // clear endstop hit flags + stepper.synchronize(); + endstops.hit_on_purpose(); // clear endstop hit flags // move back down slowly to find bed set_homing_bump_feedrate(Z_AXIS); zPosition -= home_bump_mm(Z_AXIS) * 2; line_to_z(zPosition); - st_synchronize(); - endstops_hit_on_purpose(); // clear endstop hit flags + stepper.synchronize(); + endstops.hit_on_purpose(); // clear endstop hit flags // Get the current stepper position after bumping an endstop - current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS); + current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -1641,7 +1638,7 @@ static void setup_for_endstop_move() { destination[Y_AXIS] = y; destination[Z_AXIS] = z; prepare_move_raw(); // this will also set_current_to_destination - st_synchronize(); + stepper.synchronize(); #else @@ -1649,14 +1646,14 @@ static void setup_for_endstop_move() { current_position[Z_AXIS] = z; line_to_current_position(); - st_synchronize(); + stepper.synchronize(); feedrate = xy_travel_speed; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; line_to_current_position(); - st_synchronize(); + stepper.synchronize(); #endif @@ -1681,9 +1678,9 @@ static void setup_for_endstop_move() { static void clean_up_after_endstop_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()"); #endif - endstops_not_homing(); + endstops.not_homing(); feedrate = saved_feedrate; feedrate_multiplier = saved_feedrate_multiplier; refresh_cmd_timeout(); @@ -1697,7 +1694,7 @@ static void setup_for_endstop_move() { if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position); #endif - if (z_probe_is_active) return; + if (endstops.z_probe_enabled) return; #if HAS_SERVO_ENDSTOPS @@ -1757,7 +1754,7 @@ static void setup_for_endstop_move() { destination[Y_AXIS] = destination[Y_AXIS] * 0.75; prepare_move_raw(); // this will also set_current_to_destination - st_synchronize(); + stepper.synchronize(); #if ENABLED(Z_MIN_PROBE_ENDSTOP) z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); @@ -1778,10 +1775,10 @@ static void setup_for_endstop_move() { #endif // Z_PROBE_ALLEN_KEY #if ENABLED(FIX_MOUNTED_PROBE) - // Noting to be done. Just set z_probe_is_active + // Noting to be done. Just set endstops.z_probe_enabled #endif - z_probe_is_active = true; + endstops.enable_z_probe(); } @@ -1793,7 +1790,7 @@ static void setup_for_endstop_move() { if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position); #endif - if (!z_probe_is_active) return; + if (!endstops.z_probe_enabled) return; #if HAS_SERVO_ENDSTOPS @@ -1811,7 +1808,7 @@ static void setup_for_endstop_move() { } #endif raise_z_after_probing(); // this also updates current_position - st_synchronize(); + stepper.synchronize(); } #endif @@ -1861,7 +1858,7 @@ static void setup_for_endstop_move() { destination[Y_AXIS] = 0; prepare_move_raw(); // this will also set_current_to_destination - st_synchronize(); + stepper.synchronize(); #if ENABLED(Z_MIN_PROBE_ENDSTOP) bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); @@ -1881,10 +1878,10 @@ static void setup_for_endstop_move() { #endif // Z_PROBE_ALLEN_KEY #if ENABLED(FIX_MOUNTED_PROBE) - // Nothing to do here. Just clear z_probe_is_active + // Nothing to do here. Just clear endstops.z_probe_enabled #endif - z_probe_is_active = false; + endstops.enable_z_probe(false); } #endif // HAS_Z_MIN_PROBE @@ -2081,13 +2078,13 @@ static void setup_for_endstop_move() { } #endif - if (z_probe_is_active == dock) return; - if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) { axis_unhomed_error(); return; } + if (endstops.z_probe_enabled == !dock) return; // already docked/undocked? + float oldXpos = current_position[X_AXIS]; // save x position if (dock) { #if Z_RAISE_AFTER_PROBING > 0 @@ -2105,7 +2102,7 @@ static void setup_for_endstop_move() { } do_blocking_move_to_x(oldXpos); // return to position before docking - z_probe_is_active = dock; + endstops.enable_z_probe(!dock); // logically disable docked probe } #endif // Z_PROBE_SLED @@ -2167,39 +2164,39 @@ static void homeaxis(AxisEnum axis) { // Engage an X or Y Servo endstop if enabled if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) { servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]); - if (_Z_PROBE_SUBTEST) z_probe_is_active = true; + if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true; } #endif // Set a flag for Z motor locking #if ENABLED(Z_DUAL_ENDSTOPS) - if (axis == Z_AXIS) In_Homing_Process(true); + if (axis == Z_AXIS) stepper.set_homing_flag(true); #endif // Move towards the endstop until an endstop is triggered destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; line_to_destination(); - st_synchronize(); + stepper.synchronize(); // Set the axis position as setup for the move current_position[axis] = 0; sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)"); #endif - enable_endstops(false); // Disable endstops while moving away + endstops.enable(false); // Disable endstops while moving away // Move away from the endstop by the axis HOME_BUMP_MM destination[axis] = -home_bump_mm(axis) * axis_home_dir; line_to_destination(); - st_synchronize(); + stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)"); #endif - enable_endstops(true); // Enable endstops for next homing move + endstops.enable(true); // Enable endstops for next homing move // Slow down the feedrate for the next move set_homing_bump_feedrate(axis); @@ -2207,7 +2204,7 @@ static void homeaxis(AxisEnum axis) { // Move slowly towards the endstop until triggered destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir; line_to_destination(); - st_synchronize(); + stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position); @@ -2224,17 +2221,17 @@ static void homeaxis(AxisEnum axis) { else lockZ1 = (z_endstop_adj < 0); - if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true); + if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true); sync_plan_position(); // Move to the adjusted endstop height feedrate = homing_feedrate[axis]; destination[Z_AXIS] = adj; line_to_destination(); - st_synchronize(); + stepper.synchronize(); - if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false); - In_Homing_Process(false); + if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); + stepper.set_homing_flag(false); } // Z_AXIS #endif @@ -2242,9 +2239,9 @@ static void homeaxis(AxisEnum axis) { // retrace by the amount specified in endstop_adj if (endstop_adj[axis] * axis_home_dir < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)"); #endif - enable_endstops(false); // Disable endstops while moving away + endstops.enable(false); // Disable endstops while moving away sync_plan_position(); destination[axis] = endstop_adj[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -2254,11 +2251,11 @@ static void homeaxis(AxisEnum axis) { } #endif line_to_destination(); - st_synchronize(); + stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)"); #endif - enable_endstops(true); // Enable endstops for next homing move + endstops.enable(true); // Enable endstops for next homing move } #if ENABLED(DEBUG_LEVELING_FEATURE) else { @@ -2280,7 +2277,7 @@ static void homeaxis(AxisEnum axis) { destination[axis] = current_position[axis]; feedrate = 0.0; - endstops_hit_on_purpose(); // clear endstop hit flags + endstops.hit_on_purpose(); // clear endstop hit flags axis_known_position[axis] = true; axis_homed[axis] = true; @@ -2301,7 +2298,7 @@ static void homeaxis(AxisEnum axis) { if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()"); #endif servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]); - if (_Z_PROBE_SUBTEST) z_probe_is_active = false; + if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false); } #endif @@ -2499,7 +2496,7 @@ inline void gcode_G4() { if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait - st_synchronize(); + stepper.synchronize(); refresh_cmd_timeout(); codenum += previous_cmd_ms; // keep track of when we started waiting @@ -2551,7 +2548,7 @@ inline void gcode_G28() { #endif // Wait for planner moves to finish! - st_synchronize(); + stepper.synchronize(); // For auto bed leveling, clear the level matrix #if ENABLED(AUTO_BED_LEVELING_FEATURE) @@ -2594,8 +2591,8 @@ inline void gcode_G28() { for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH); feedrate = 1.732 * homing_feedrate[X_AXIS]; line_to_destination(); - st_synchronize(); - endstops_hit_on_purpose(); // clear endstop hit flags + stepper.synchronize(); + endstops.hit_on_purpose(); // clear endstop hit flags // Destination reached for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i]; @@ -2643,7 +2640,7 @@ inline void gcode_G28() { } #endif line_to_destination(); - st_synchronize(); + stepper.synchronize(); /** * Update the current Z position even if it currently not real from @@ -2676,7 +2673,7 @@ inline void gcode_G28() { destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS); feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1); line_to_destination(); - st_synchronize(); + stepper.synchronize(); set_axis_is_at_home(X_AXIS); set_axis_is_at_home(Y_AXIS); @@ -2690,8 +2687,8 @@ inline void gcode_G28() { destination[Y_AXIS] = current_position[Y_AXIS]; line_to_destination(); feedrate = 0.0; - st_synchronize(); - endstops_hit_on_purpose(); // clear endstop hit flags + stepper.synchronize(); + endstops.hit_on_purpose(); // clear endstop hit flags current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; @@ -2784,7 +2781,7 @@ inline void gcode_G28() { // Move in the XY plane line_to_destination(); - st_synchronize(); + stepper.synchronize(); /** * Update the current positions for XY, Z is still at least at @@ -2857,10 +2854,10 @@ inline void gcode_G28() { #endif #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING) - enable_endstops(false); + endstops.enable(false); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { - SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)"); + SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)"); } #endif #endif @@ -2875,7 +2872,7 @@ inline void gcode_G28() { set_destination_to_current(); feedrate = homing_feedrate[Z_AXIS]; line_to_destination(); - st_synchronize(); + stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position); #endif @@ -2885,7 +2882,7 @@ inline void gcode_G28() { feedrate = saved_feedrate; feedrate_multiplier = saved_feedrate_multiplier; refresh_cmd_timeout(); - endstops_hit_on_purpose(); // clear endstop hit flags + endstops.hit_on_purpose(); // clear endstop hit flags #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { @@ -2921,7 +2918,7 @@ inline void gcode_G28() { #endif feedrate = saved_feedrate; - st_synchronize(); + stepper.synchronize(); } /** @@ -3015,7 +3012,7 @@ inline void gcode_G28() { #endif ; line_to_current_position(); - st_synchronize(); + stepper.synchronize(); // After recording the last point, activate the mbl and home SERIAL_PROTOCOLLNPGM("Mesh probing done."); @@ -3240,7 +3237,7 @@ inline void gcode_G28() { deploy_z_probe(); #endif - st_synchronize(); + stepper.synchronize(); setup_for_endstop_move(); @@ -3511,7 +3508,7 @@ inline void gcode_G28() { float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, z_tmp = current_position[Z_AXIS], - real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane) + real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { @@ -3588,9 +3585,9 @@ inline void gcode_G28() { #endif enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); #if ENABLED(HAS_Z_MIN_PROBE) - z_probe_is_active = false; + endstops.enable_z_probe(false); #endif - st_synchronize(); + stepper.synchronize(); #endif KEEPALIVE_STATE(IN_HANDLER); @@ -3615,7 +3612,7 @@ inline void gcode_G28() { #endif deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here. - st_synchronize(); + stepper.synchronize(); // TODO: clear the leveling matrix or the planner will be set incorrectly setup_for_endstop_move(); // Too late. Must be done before deploying. @@ -3650,7 +3647,7 @@ inline void gcode_G28() { inline void gcode_G92() { bool didE = code_seen(axis_codes[E_AXIS]); - if (!didE) st_synchronize(); + if (!didE) stepper.synchronize(); bool didXYZ = false; for (int i = 0; i < NUM_AXIS; i++) { @@ -3712,7 +3709,7 @@ inline void gcode_G92() { } lcd_ignore_click(); - st_synchronize(); + stepper.synchronize(); refresh_cmd_timeout(); if (codenum > 0) { codenum += previous_cmd_ms; // wait until this time for a click @@ -3853,7 +3850,7 @@ inline void gcode_M31() { */ inline void gcode_M32() { if (card.sdprinting) - st_synchronize(); + stepper.synchronize(); char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start. if (!namestartpos) @@ -4819,7 +4816,7 @@ inline void gcode_M140() { */ inline void gcode_M81() { disable_all_heaters(); - finishAndDisableSteppers(); + stepper.finish_and_disable(); #if FAN_COUNT > 0 #if FAN_COUNT > 1 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; @@ -4829,7 +4826,7 @@ inline void gcode_M81() { #endif delay(1000); // Wait 1 second before switching off #if HAS_SUICIDE - st_synchronize(); + stepper.synchronize(); suicide(); #elif HAS_POWER_SWITCH OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); @@ -4864,10 +4861,10 @@ inline void gcode_M18_M84() { else { bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS]))); if (all_axis) { - finishAndDisableSteppers(); + stepper.finish_and_disable(); } else { - st_synchronize(); + stepper.synchronize(); if (code_seen('X')) disable_x(); if (code_seen('Y')) disable_y(); if (code_seen('Z')) disable_z(); @@ -4927,35 +4924,7 @@ static void report_current_position() { SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); - CRITICAL_SECTION_START; - extern volatile long count_position[NUM_AXIS]; - long xpos = count_position[X_AXIS], - ypos = count_position[Y_AXIS], - zpos = count_position[Z_AXIS]; - CRITICAL_SECTION_END; - - #if ENABLED(COREXY) || ENABLED(COREXZ) - SERIAL_PROTOCOLPGM(MSG_COUNT_A); - #else - SERIAL_PROTOCOLPGM(MSG_COUNT_X); - #endif - SERIAL_PROTOCOL(xpos); - - #if ENABLED(COREXY) - SERIAL_PROTOCOLPGM(" B:"); - #else - SERIAL_PROTOCOLPGM(" Y:"); - #endif - SERIAL_PROTOCOL(ypos); - - #if ENABLED(COREXZ) - SERIAL_PROTOCOLPGM(" C:"); - #else - SERIAL_PROTOCOLPGM(" Z:"); - #endif - SERIAL_PROTOCOL(zpos); - - SERIAL_EOL; + stepper.report_positions(); #if ENABLED(SCARA) SERIAL_PROTOCOLPGM("SCARA Theta:"); @@ -5039,12 +5008,12 @@ inline void gcode_M119() { /** * M120: Enable endstops and set non-homing endstop state to "enabled" */ -inline void gcode_M120() { enable_endstops_globally(true); } +inline void gcode_M120() { endstops.enable_globally(true); } /** * M121: Disable endstops and set non-homing endstop state to "disabled" */ -inline void gcode_M121() { enable_endstops_globally(false); } +inline void gcode_M121() { endstops.enable_globally(false); } #if ENABLED(BLINKM) @@ -5439,7 +5408,7 @@ inline void gcode_M226() { if (pin_number > -1) { int target = LOW; - st_synchronize(); + stepper.synchronize(); pinMode(pin_number, INPUT); @@ -5801,7 +5770,7 @@ inline void gcode_M303() { /** * M400: Finish all moves */ -inline void gcode_M400() { st_synchronize(); } +inline void gcode_M400() { stepper.synchronize(); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) @@ -5887,7 +5856,7 @@ inline void gcode_M400() { st_synchronize(); } * This will stop the carriages mid-move, so most likely they * will be out of sync with the stepper position after this. */ -inline void gcode_M410() { quickStop(); } +inline void gcode_M410() { stepper.quick_stop(); } #if ENABLED(MESH_BED_LEVELING) @@ -6111,7 +6080,7 @@ inline void gcode_M503() { RUNPLAN; //finish moves - st_synchronize(); + stepper.synchronize(); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); @@ -6135,7 +6104,7 @@ inline void gcode_M503() { current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH; destination[E_AXIS] = current_position[E_AXIS]; line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE); - st_synchronize(); + stepper.synchronize(); #endif } // while(!lcd_clicked) KEEPALIVE_STATE(IN_HANDLER); @@ -6143,7 +6112,7 @@ inline void gcode_M503() { #if ENABLED(AUTO_FILAMENT_CHANGE) current_position[E_AXIS] = 0; - st_synchronize(); + stepper.synchronize(); #endif //return to normal @@ -6198,7 +6167,7 @@ inline void gcode_M503() { * Note: the X axis should be homed after changing dual x-carriage mode. */ inline void gcode_M605() { - st_synchronize(); + stepper.synchronize(); if (code_seen('S')) dual_x_carriage_mode = code_value(); switch (dual_x_carriage_mode) { case DXC_DUPLICATION_MODE: @@ -6375,7 +6344,7 @@ inline void gcode_T(uint8_t tmp_extruder) { current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder); plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); - st_synchronize(); + stepper.synchronize(); } // apply Y & Z extruder offset (x offset is already used in determining home pos) @@ -6460,7 +6429,7 @@ inline void gcode_T(uint8_t tmp_extruder) { } // (tmp_extruder != active_extruder) #if ENABLED(EXT_SOLENOID) - st_synchronize(); + stepper.synchronize(); disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif // EXT_SOLENOID @@ -7400,7 +7369,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1); sync_plan_position(); - st_synchronize(); + stepper.synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; } @@ -7927,7 +7896,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { destination[E_AXIS] = oldedes; plan_set_e_position(oldepos); previous_cmd_ms = ms; // refresh_cmd_timeout() - st_synchronize(); + stepper.synchronize(); switch (active_extruder) { case 0: E0_ENABLE_WRITE(oldstatus); @@ -8004,7 +7973,7 @@ void kill(const char* lcd_msg) { if (!filament_ran_out) { filament_ran_out = true; enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT)); - st_synchronize(); + stepper.synchronize(); } } diff --git a/Marlin/cardreader.cpp b/Marlin/cardreader.cpp index fbe4ae7e70..1e9aab3b66 100644 --- a/Marlin/cardreader.cpp +++ b/Marlin/cardreader.cpp @@ -596,7 +596,7 @@ void CardReader::updir() { } void CardReader::printingHasFinished() { - st_synchronize(); + stepper.synchronize(); if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure. file.close(); file_subcall_ctr--; diff --git a/Marlin/endstops.cpp b/Marlin/endstops.cpp new file mode 100644 index 0000000000..e3d5f4b827 --- /dev/null +++ b/Marlin/endstops.cpp @@ -0,0 +1,317 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +/** + * endstops.cpp - A singleton object to manage endstops + */ + +#include "Marlin.h" +#include "endstops.h" +#include "stepper.h" +#include "ultralcd.h" + +// TEST_ENDSTOP: test the old and the current status of an endstop +#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP)) + +Endstops endstops; + +Endstops::Endstops() { + enable_globally(ENABLED(ENDSTOPS_ONLY_FOR_HOMING)); + enable(true); + #if ENABLED(HAS_Z_MIN_PROBE) + enable_z_probe(false); + #endif +} // Endstops::Endstops + +void Endstops::init() { + + #if HAS_X_MIN + SET_INPUT(X_MIN_PIN); + #if ENABLED(ENDSTOPPULLUP_XMIN) + WRITE(X_MIN_PIN,HIGH); + #endif + #endif + + #if HAS_Y_MIN + SET_INPUT(Y_MIN_PIN); + #if ENABLED(ENDSTOPPULLUP_YMIN) + WRITE(Y_MIN_PIN,HIGH); + #endif + #endif + + #if HAS_Z_MIN + SET_INPUT(Z_MIN_PIN); + #if ENABLED(ENDSTOPPULLUP_ZMIN) + WRITE(Z_MIN_PIN,HIGH); + #endif + #endif + + #if HAS_Z2_MIN + SET_INPUT(Z2_MIN_PIN); + #if ENABLED(ENDSTOPPULLUP_ZMIN) + WRITE(Z2_MIN_PIN,HIGH); + #endif + #endif + + #if HAS_X_MAX + SET_INPUT(X_MAX_PIN); + #if ENABLED(ENDSTOPPULLUP_XMAX) + WRITE(X_MAX_PIN,HIGH); + #endif + #endif + + #if HAS_Y_MAX + SET_INPUT(Y_MAX_PIN); + #if ENABLED(ENDSTOPPULLUP_YMAX) + WRITE(Y_MAX_PIN,HIGH); + #endif + #endif + + #if HAS_Z_MAX + SET_INPUT(Z_MAX_PIN); + #if ENABLED(ENDSTOPPULLUP_ZMAX) + WRITE(Z_MAX_PIN,HIGH); + #endif + #endif + + #if HAS_Z2_MAX + SET_INPUT(Z2_MAX_PIN); + #if ENABLED(ENDSTOPPULLUP_ZMAX) + WRITE(Z2_MAX_PIN,HIGH); + #endif + #endif + + #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. + SET_INPUT(Z_MIN_PROBE_PIN); + #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE) + WRITE(Z_MIN_PROBE_PIN,HIGH); + #endif + #endif + +} // Endstops::init + +void Endstops::report_state() { + if (endstop_hit_bits) { + #if ENABLED(ULTRA_LCD) + char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' '; + #define _SET_STOP_CHAR(A,C) (chr## A = C) + #else + #define _SET_STOP_CHAR(A,C) ; + #endif + + #define _ENDSTOP_HIT_ECHO(A,C) do{ \ + SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \ + _SET_STOP_CHAR(A,C); }while(0) + + #define _ENDSTOP_HIT_TEST(A,C) \ + if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \ + _ENDSTOP_HIT_ECHO(A,C) + + SERIAL_ECHO_START; + SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); + _ENDSTOP_HIT_TEST(X, 'X'); + _ENDSTOP_HIT_TEST(Y, 'Y'); + _ENDSTOP_HIT_TEST(Z, 'Z'); + + #if ENABLED(Z_MIN_PROBE_ENDSTOP) + #define P_AXIS Z_AXIS + if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P'); + #endif + SERIAL_EOL; + + #if ENABLED(ULTRA_LCD) + char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string + sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP); + lcd_setstatus(msg); + #endif + + hit_on_purpose(); + + #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) + if (abort_on_endstop_hit) { + card.sdprinting = false; + card.closefile(); + stepper.quick_stop(); + disable_all_heaters(); // switch off all heaters. + } + #endif + } +} // Endstops::report_state + +// Check endstops - Called from ISR! +void Endstops::update() { + + #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN + #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING + #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN)) + #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX + + // UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status + #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) + // COPY_BIT: copy the value of COPY_BIT to BIT in bits + #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) + + #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \ + UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ + if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \ + _ENDSTOP_HIT(AXIS); \ + stepper.endstop_triggered(_AXIS(AXIS)); \ + } \ + } while(0) + + #if ENABLED(COREXY) || ENABLED(COREXZ) + // Head direction in -X axis for CoreXY and CoreXZ bots. + // If Delta1 == -Delta2, the movement is only in Y or Z axis + if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(A_AXIS) == stepper.motor_direction(CORE_AXIS_2))) { + if (stepper.motor_direction(X_HEAD)) + #else + if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot) + #endif + { // -direction + #if ENABLED(DUAL_X_CARRIAGE) + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1)) + #endif + { + #if HAS_X_MIN + UPDATE_ENDSTOP(X, MIN); + #endif + } + } + else { // +direction + #if ENABLED(DUAL_X_CARRIAGE) + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1)) + #endif + { + #if HAS_X_MAX + UPDATE_ENDSTOP(X, MAX); + #endif + } + } + #if ENABLED(COREXY) || ENABLED(COREXZ) + } + #endif + + #if ENABLED(COREXY) + // Head direction in -Y axis for CoreXY bots. + // If DeltaX == DeltaY, the movement is only in X axis + if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[B_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(B_AXIS))) { + if (stepper.motor_direction(Y_HEAD)) + #else + if (stepper.motor_direction(Y_AXIS)) // -direction + #endif + { // -direction + #if HAS_Y_MIN + UPDATE_ENDSTOP(Y, MIN); + #endif + } + else { // +direction + #if HAS_Y_MAX + UPDATE_ENDSTOP(Y, MAX); + #endif + } + #if ENABLED(COREXY) + } + #endif + + #if ENABLED(COREXZ) + // Head direction in -Z axis for CoreXZ bots. + // If DeltaX == DeltaZ, the movement is only in X axis + if ((stepper.current_block->steps[A_AXIS] != stepper.current_block->steps[C_AXIS]) || (stepper.motor_direction(A_AXIS) != stepper.motor_direction(C_AXIS))) { + if (stepper.motor_direction(Z_HEAD)) + #else + if (stepper.motor_direction(Z_AXIS)) + #endif + { // z -direction + #if HAS_Z_MIN + + #if ENABLED(Z_DUAL_ENDSTOPS) + + UPDATE_ENDSTOP_BIT(Z, MIN); + #if HAS_Z2_MIN + UPDATE_ENDSTOP_BIT(Z2, MIN); + #else + COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); + #endif + + byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2 + + if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN + stepper.endstop_triggered(Z_AXIS); + SBI(endstop_hit_bits, Z_MIN); + if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... + stepper.kill_current_block(); + } + + #else // !Z_DUAL_ENDSTOPS + + #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE) + if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN); + #else + UPDATE_ENDSTOP(Z, MIN); + #endif + + #endif // !Z_DUAL_ENDSTOPS + + #endif // HAS_Z_MIN + + #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE) + if (z_probe_enabled) { + UPDATE_ENDSTOP(Z, MIN_PROBE); + if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); + } + #endif + } + else { // z +direction + #if HAS_Z_MAX + + #if ENABLED(Z_DUAL_ENDSTOPS) + + UPDATE_ENDSTOP_BIT(Z, MAX); + #if HAS_Z2_MAX + UPDATE_ENDSTOP_BIT(Z2, MAX); + #else + COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); + #endif + + byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2 + + if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX + stepper.endstop_triggered(Z_AXIS); + SBI(endstop_hit_bits, Z_MIN); + if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... + stepper.kill_current_block(); + } + + #else // !Z_DUAL_ENDSTOPS + + UPDATE_ENDSTOP(Z, MAX); + + #endif // !Z_DUAL_ENDSTOPS + #endif // Z_MAX_PIN + } + #if ENABLED(COREXZ) + } + #endif + old_endstop_bits = current_endstop_bits; +} // Endstops::update() diff --git a/Marlin/endstops.h b/Marlin/endstops.h new file mode 100644 index 0000000000..4cf6f5b088 --- /dev/null +++ b/Marlin/endstops.h @@ -0,0 +1,94 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +/** + * endstops.h - manages endstops + */ + +#ifndef ENDSTOPS_H +#define ENDSTOPS_H + +enum EndstopEnum {X_MIN = 0, Y_MIN = 1, Z_MIN = 2, Z_MIN_PROBE = 3, X_MAX = 4, Y_MAX = 5, Z_MAX = 6, Z2_MIN = 7, Z2_MAX = 8}; + +class Endstops { + + public: + + volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value + + #if ENABLED(Z_DUAL_ENDSTOPS) + uint16_t current_endstop_bits = 0, + old_endstop_bits = 0; + #else + byte current_endstop_bits = 0, + old_endstop_bits = 0; + #endif + + + bool enabled = true; + bool enabled_globally = + #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING) + false + #else + true + #endif + ; + + Endstops(); + + /** + * Initialize the endstop pins + */ + void init(); + + /** + * Update the endstops bits from the pins + */ + void update(); + + /** + * Print an error message reporting the position when the endstops were last hit. + */ + void report_state(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered + + // Enable / disable endstop checking globally + FORCE_INLINE void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; } + + // Enable / disable endstop checking + FORCE_INLINE void enable(bool onoff=true) { enabled = onoff; } + + // Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable + FORCE_INLINE void not_homing() { enabled = enabled_globally; } + + // Clear endstops (i.e., they were hit intentionally) to suppress the report + FORCE_INLINE void hit_on_purpose() { endstop_hit_bits = 0; } + + // Enable / disable endstop z-probe checking + #if ENABLED(HAS_Z_MIN_PROBE) + volatile bool z_probe_enabled = false; + FORCE_INLINE void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; } + #endif +}; + +extern Endstops endstops; + +#endif // ENDSTOPS_H diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index f5062d2a7d..9347744a58 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -1085,7 +1085,7 @@ float junction_deviation = 0.1; planner_recalculate(); - st_wake_up(); + stepper.wake_up(); } // plan_buffer_line() @@ -1097,7 +1097,7 @@ float junction_deviation = 0.1; * On CORE machines XYZ is derived from ABC. */ vector_3 plan_get_position() { - vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS)); + vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS)); //position.debug("in plan_get position"); //plan_bed_level_matrix.debug("in plan_get_position"); @@ -1132,7 +1132,7 @@ float junction_deviation = 0.1; ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]), nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]), ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); - st_set_position(nx, ny, nz, ne); + stepper.set_position(nx, ny, nz, ne); previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; @@ -1140,7 +1140,7 @@ float junction_deviation = 0.1; void plan_set_e_position(const float& e) { position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); - st_set_e_position(position[E_AXIS]); + stepper.set_e_position(position[E_AXIS]); } // Calculate the steps/s^2 acceleration rates, based on the mm/s^s diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 4b52edac9b..d3fa2b6375 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -21,7 +21,7 @@ */ /** - * stepper.cpp - stepper motor driver: executes motion plans using stepper motors + * stepper.cpp - A singleton object to execute motion plans using stepper motors * Marlin Firmware * * Derived from Grbl @@ -46,6 +46,7 @@ #include "Marlin.h" #include "stepper.h" +#include "endstops.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" @@ -57,85 +58,7 @@ #include #endif -//=========================================================================== -//============================= public variables ============================ -//=========================================================================== -block_t* current_block; // A pointer to the block currently being traced - -#if ENABLED(HAS_Z_MIN_PROBE) - volatile bool z_probe_is_active = false; -#endif - -//=========================================================================== -//============================= private variables =========================== -//=========================================================================== -//static makes it impossible to be called from outside of this file by extern.! - -// Variables used by The Stepper Driver Interrupt -static unsigned char out_bits = 0; // The next stepping-bits to be output -static unsigned int cleaning_buffer_counter; - -#if ENABLED(Z_DUAL_ENDSTOPS) - static bool performing_homing = false, - locked_z_motor = false, - locked_z2_motor = false; -#endif - -// Counter variables for the Bresenham line tracer -static long counter_x, counter_y, counter_z, counter_e; -volatile static unsigned long step_events_completed; // The number of step events executed in the current block - -#if ENABLED(ADVANCE) - static long advance_rate, advance, final_advance = 0; - static long old_advance = 0; - static long e_steps[4]; -#endif - -static long acceleration_time, deceleration_time; -//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; -static unsigned short acc_step_rate; // needed for deceleration start point -static uint8_t step_loops; -static uint8_t step_loops_nominal; -static unsigned short OCR1A_nominal; - -volatile long endstops_trigsteps[3] = { 0 }; -volatile long endstops_stepsTotal, endstops_stepsDone; -static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value - -#if DISABLED(Z_DUAL_ENDSTOPS) - static byte -#else - static uint16_t -#endif - old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX - -#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - bool abort_on_endstop_hit = false; -#endif - -#if HAS_MOTOR_CURRENT_PWM - #ifndef PWM_MOTOR_CURRENT - #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT - #endif - const int motor_current_setting[3] = PWM_MOTOR_CURRENT; -#endif - -static bool check_endstops = true; -static bool check_endstops_global = - #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING) - false - #else - true - #endif -; - -volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units -volatile signed char count_direction[NUM_AXIS] = { 1 }; - - -//=========================================================================== -//================================ functions ================================ -//=========================================================================== +Stepper stepper; // Singleton #if ENABLED(DUAL_X_CARRIAGE) #define X_APPLY_DIR(v,ALWAYS) \ @@ -173,12 +96,12 @@ volatile signed char count_direction[NUM_AXIS] = { 1 }; #define Z_APPLY_STEP(v,Q) \ if (performing_homing) { \ if (Z_HOME_DIR > 0) {\ - if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ - if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ + if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ + if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ else { \ - if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ - if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ + if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ + if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ } \ else { \ @@ -195,31 +118,6 @@ volatile signed char count_direction[NUM_AXIS] = { 1 }; #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v) -// intRes = intIn1 * intIn2 >> 16 -// uses: -// r26 to store 0 -// r27 to store the byte 1 of the 24 bit result -#define MultiU16X8toH16(intRes, charIn1, intIn2) \ - asm volatile ( \ - "clr r26 \n\t" \ - "mul %A1, %B2 \n\t" \ - "movw %A0, r0 \n\t" \ - "mul %A1, %A2 \n\t" \ - "add %A0, r1 \n\t" \ - "adc %B0, r26 \n\t" \ - "lsr r0 \n\t" \ - "adc %A0, r26 \n\t" \ - "adc %B0, r26 \n\t" \ - "clr r1 \n\t" \ - : \ - "=&r" (intRes) \ - : \ - "d" (charIn1), \ - "d" (intIn2) \ - : \ - "r26" \ - ) - // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 @@ -281,312 +179,38 @@ volatile signed char count_direction[NUM_AXIS] = { 1 }; #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A) -void enable_endstops(bool check) { check_endstops = check; } - -void enable_endstops_globally(bool check) { check_endstops_global = check_endstops = check; } - -void endstops_not_homing() { check_endstops = check_endstops_global; } - -void endstops_hit_on_purpose() { endstop_hit_bits = 0; } - -void checkHitEndstops() { - if (endstop_hit_bits) { - #if ENABLED(ULTRA_LCD) - char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' '; - #define _SET_STOP_CHAR(A,C) (chr## A = C) - #else - #define _SET_STOP_CHAR(A,C) ; - #endif - - #define _ENDSTOP_HIT_ECHO(A,C) do{ \ - SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", endstops_trigsteps[A ##_AXIS] / axis_steps_per_unit[A ##_AXIS]); \ - _SET_STOP_CHAR(A,C); }while(0) - - #define _ENDSTOP_HIT_TEST(A,C) \ - if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \ - _ENDSTOP_HIT_ECHO(A,C) - - SERIAL_ECHO_START; - SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); - _ENDSTOP_HIT_TEST(X, 'X'); - _ENDSTOP_HIT_TEST(Y, 'Y'); - _ENDSTOP_HIT_TEST(Z, 'Z'); - - #if ENABLED(Z_MIN_PROBE_ENDSTOP) - #define P_AXIS Z_AXIS - if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P'); - #endif - SERIAL_EOL; - - #if ENABLED(ULTRA_LCD) - char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string - sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP); - lcd_setstatus(msg); - #endif - - endstops_hit_on_purpose(); - - #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) - if (abort_on_endstop_hit) { - card.sdprinting = false; - card.closefile(); - quickStop(); - disable_all_heaters(); // switch off all heaters. - } - #endif - } -} - -// Check endstops - Called from ISR! -inline void update_endstops() { - - #if ENABLED(Z_DUAL_ENDSTOPS) - uint16_t - #else - byte - #endif - current_endstop_bits = 0; - - #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN - #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING - #define _AXIS(AXIS) AXIS ##_AXIS - #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN)) - #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX - - // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status - #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) - // COPY_BIT: copy the value of COPY_BIT to BIT in bits - #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) - // TEST_ENDSTOP: test the old and the current status of an endstop - #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP)) - - #if ENABLED(COREXY) || ENABLED(COREXZ) - - #define _SET_TRIGSTEPS(AXIS) do { \ - float axis_pos = count_position[_AXIS(AXIS)]; \ - if (_AXIS(AXIS) == A_AXIS) \ - axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \ - else if (_AXIS(AXIS) == CORE_AXIS_2) \ - axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \ - endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \ - } while(0) - - #else - - #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)] - - #endif // COREXY || COREXZ - - #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \ - SET_ENDSTOP_BIT(AXIS, MINMAX); \ - if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \ - _SET_TRIGSTEPS(AXIS); \ - _ENDSTOP_HIT(AXIS); \ - step_events_completed = current_block->step_event_count; \ - } \ - } while(0) - - #if ENABLED(COREXY) || ENABLED(COREXZ) - // Head direction in -X axis for CoreXY and CoreXZ bots. - // If Delta1 == -Delta2, the movement is only in Y or Z axis - if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) { - if (TEST(out_bits, X_HEAD)) - #else - if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot) - #endif - { // -direction - #if ENABLED(DUAL_X_CARRIAGE) - // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder - if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) - #endif - { - #if HAS_X_MIN - UPDATE_ENDSTOP(X, MIN); - #endif - } - } - else { // +direction - #if ENABLED(DUAL_X_CARRIAGE) - // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder - if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) - #endif - { - #if HAS_X_MAX - UPDATE_ENDSTOP(X, MAX); - #endif - } - } - #if ENABLED(COREXY) || ENABLED(COREXZ) - } - #endif - - #if ENABLED(COREXY) - // Head direction in -Y axis for CoreXY bots. - // If DeltaX == DeltaY, the movement is only in X axis - if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) { - if (TEST(out_bits, Y_HEAD)) - #else - if (TEST(out_bits, Y_AXIS)) // -direction - #endif - { // -direction - #if HAS_Y_MIN - UPDATE_ENDSTOP(Y, MIN); - #endif - } - else { // +direction - #if HAS_Y_MAX - UPDATE_ENDSTOP(Y, MAX); - #endif - } - #if ENABLED(COREXY) - } - #endif - - #if ENABLED(COREXZ) - // Head direction in -Z axis for CoreXZ bots. - // If DeltaX == DeltaZ, the movement is only in X axis - if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) { - if (TEST(out_bits, Z_HEAD)) - #else - if (TEST(out_bits, Z_AXIS)) - #endif - { // z -direction - #if HAS_Z_MIN - - #if ENABLED(Z_DUAL_ENDSTOPS) - SET_ENDSTOP_BIT(Z, MIN); - #if HAS_Z2_MIN - SET_ENDSTOP_BIT(Z2, MIN); - #else - COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); - #endif - - byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2 - - if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - SBI(endstop_hit_bits, Z_MIN); - if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; - } - #else // !Z_DUAL_ENDSTOPS - - #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE) - if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN); - #else - UPDATE_ENDSTOP(Z, MIN); - #endif - #endif // !Z_DUAL_ENDSTOPS - #endif - - #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE) - if (z_probe_is_active) { - UPDATE_ENDSTOP(Z, MIN_PROBE); - if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); - } - #endif - } - else { // z +direction - #if HAS_Z_MAX - - #if ENABLED(Z_DUAL_ENDSTOPS) - - SET_ENDSTOP_BIT(Z, MAX); - #if HAS_Z2_MAX - SET_ENDSTOP_BIT(Z2, MAX); - #else - COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); - #endif - - byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2 - - if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX - endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; - SBI(endstop_hit_bits, Z_MIN); - if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - step_events_completed = current_block->step_event_count; - } - - #else // !Z_DUAL_ENDSTOPS - - UPDATE_ENDSTOP(Z, MAX); - - #endif // !Z_DUAL_ENDSTOPS - #endif // Z_MAX_PIN - } - #if ENABLED(COREXZ) - } - #endif - old_endstop_bits = current_endstop_bits; -} - -// __________________________ -// /| |\ _________________ ^ -// / | | \ /| |\ | -// / | | \ / | | \ s -// / | | | | | \ p -// / | | | | | \ e -// +-----+------------------------+---+--+---------------+----+ e -// | BLOCK 1 | BLOCK 2 | d -// -// time -----> -// -// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates -// first block->accelerate_until step_events_completed, then keeps going at constant speed until -// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. -// The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. - -void st_wake_up() { +/** + * __________________________ + * /| |\ _________________ ^ + * / | | \ /| |\ | + * / | | \ / | | \ s + * / | | | | | \ p + * / | | | | | \ e + * +-----+------------------------+---+--+---------------+----+ e + * | BLOCK 1 | BLOCK 2 | d + * + * time -----> + * + * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates + * first block->accelerate_until step_events_completed, then keeps going at constant speed until + * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. + * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. + */ +void Stepper::wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } -FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { - unsigned short timer; - - NOMORE(step_rate, MAX_STEP_FREQUENCY); - - if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times - step_rate = (step_rate >> 2) & 0x3fff; - step_loops = 4; - } - else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times - step_rate = (step_rate >> 1) & 0x7fff; - step_loops = 2; - } - else { - step_loops = 1; - } - - NOLESS(step_rate, F_CPU / 500000); - step_rate -= F_CPU / 500000; // Correct for minimal speed - if (step_rate >= (8 * 256)) { // higher step rate - unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0]; - unsigned char tmp_step_rate = (step_rate & 0x00ff); - unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2); - MultiU16X8toH16(timer, tmp_step_rate, gain); - timer = (unsigned short)pgm_read_word_near(table_address) - timer; - } - else { // lower step rates - unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; - table_address += ((step_rate) >> 1) & 0xfffc; - timer = (unsigned short)pgm_read_word_near(table_address); - timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3); - } - if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) - return timer; -} - /** * Set the stepper direction of each axis * * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ */ -void set_stepper_direction() { +void Stepper::set_directions() { #define SET_STEP_DIR(AXIS) \ - if (TEST(out_bits, AXIS ##_AXIS)) { \ + if (motor_direction(AXIS ##_AXIS)) { \ AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \ count_direction[AXIS ##_AXIS] = -1; \ } \ @@ -600,7 +224,7 @@ void set_stepper_direction() { SET_STEP_DIR(Z); // C #if DISABLED(ADVANCE) - if (TEST(out_bits, E_AXIS)) { + if (motor_direction(E_AXIS)) { REV_E_DIR(); count_direction[E_AXIS] = -1; } @@ -611,49 +235,11 @@ void set_stepper_direction() { #endif //!ADVANCE } -// Initializes the trapezoid generator from the current block. Called whenever a new -// block begins. -FORCE_INLINE void trapezoid_generator_reset() { - - static int8_t last_extruder = -1; - - if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) { - out_bits = current_block->direction_bits; - last_extruder = current_block->active_extruder; - set_stepper_direction(); - } - - #if ENABLED(ADVANCE) - advance = current_block->initial_advance; - final_advance = current_block->final_advance; - // Do E steps + advance steps - e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); - old_advance = advance >>8; - #endif - deceleration_time = 0; - // step_rate to timer interval - OCR1A_nominal = calc_timer(current_block->nominal_rate); - // make a note of the number of step loops required at nominal speed - step_loops_nominal = step_loops; - acc_step_rate = current_block->initial_rate; - acceleration_time = calc_timer(acc_step_rate); - OCR1A = acceleration_time; - - // SERIAL_ECHO_START; - // SERIAL_ECHOPGM("advance :"); - // SERIAL_ECHO(current_block->advance/256.0); - // SERIAL_ECHOPGM("advance rate :"); - // SERIAL_ECHO(current_block->advance_rate/256.0); - // SERIAL_ECHOPGM("initial advance :"); - // SERIAL_ECHO(current_block->initial_advance/256.0); - // SERIAL_ECHOPGM("final advance :"); - // SERIAL_ECHOLN(current_block->final_advance/256.0); -} - // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. -ISR(TIMER1_COMPA_vect) { +ISR(TIMER1_COMPA_vect) { stepper.isr(); } +void Stepper::isr() { if (cleaning_buffer_counter) { current_block = NULL; plan_discard_current_block(); @@ -672,8 +258,8 @@ ISR(TIMER1_COMPA_vect) { if (current_block) { current_block->busy = true; trapezoid_generator_reset(); - counter_x = -(current_block->step_event_count >> 1); - counter_y = counter_z = counter_e = counter_x; + counter_X = -(current_block->step_event_count >> 1); + counter_Y = counter_Z = counter_E = counter_X; step_events_completed = 0; #if ENABLED(Z_LATE_ENABLE) @@ -697,9 +283,9 @@ ISR(TIMER1_COMPA_vect) { // Update endstops state, if enabled #if ENABLED(HAS_Z_MIN_PROBE) - if (check_endstops || z_probe_is_active) update_endstops(); + if (endstops.enabled || endstops.z_probe_enabled) endstops.update(); #else - if (check_endstops) update_endstops(); + if (endstops.enabled) endstops.update(); #endif // Take multiple steps per interrupt (For high speed moves) @@ -709,48 +295,47 @@ ISR(TIMER1_COMPA_vect) { #endif #if ENABLED(ADVANCE) - counter_e += current_block->steps[E_AXIS]; - if (counter_e > 0) { - counter_e -= current_block->step_event_count; - e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1; + counter_E += current_block->steps[E_AXIS]; + if (counter_E > 0) { + counter_E -= current_block->step_event_count; + e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1; } #endif //ADVANCE - #define _COUNTER(axis) counter_## axis + #define _COUNTER(AXIS) counter_## AXIS #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN - #define STEP_ADD(axis, AXIS) \ - _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \ - if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } + #define STEP_ADD(AXIS) \ + _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ + if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } - STEP_ADD(x,X); - STEP_ADD(y,Y); - STEP_ADD(z,Z); + STEP_ADD(X); + STEP_ADD(Y); + STEP_ADD(Z); #if DISABLED(ADVANCE) - STEP_ADD(e,E); + STEP_ADD(E); #endif - #define STEP_IF_COUNTER(axis, AXIS) \ - if (_COUNTER(axis) > 0) { \ - _COUNTER(axis) -= current_block->step_event_count; \ + #define STEP_IF_COUNTER(AXIS) \ + if (_COUNTER(AXIS) > 0) { \ + _COUNTER(AXIS) -= current_block->step_event_count; \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ } - STEP_IF_COUNTER(x, X); - STEP_IF_COUNTER(y, Y); - STEP_IF_COUNTER(z, Z); + STEP_IF_COUNTER(X); + STEP_IF_COUNTER(Y); + STEP_IF_COUNTER(Z); #if DISABLED(ADVANCE) - STEP_IF_COUNTER(e, E); + STEP_IF_COUNTER(E); #endif step_events_completed++; if (step_events_completed >= current_block->step_event_count) break; } // Calculate new timer value - unsigned short timer; - unsigned short step_rate; + unsigned short timer, step_rate; if (step_events_completed <= (unsigned long)current_block->accelerate_until) { MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); @@ -817,10 +402,11 @@ ISR(TIMER1_COMPA_vect) { } #if ENABLED(ADVANCE) - unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies - ISR(TIMER0_COMPA_vect) { + ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); } + + void Stepper::advance_isr() { old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; @@ -852,9 +438,10 @@ ISR(TIMER1_COMPA_vect) { #endif } } + #endif // ADVANCE -void st_init() { +void Stepper::init() { digipot_init(); //Initialize Digipot Motor Current microstep_init(); //Initialize Microstepping Pins @@ -944,70 +531,10 @@ void st_init() { if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); #endif - //endstops and pullups - - #if HAS_X_MIN - SET_INPUT(X_MIN_PIN); - #if ENABLED(ENDSTOPPULLUP_XMIN) - WRITE(X_MIN_PIN,HIGH); - #endif - #endif - - #if HAS_Y_MIN - SET_INPUT(Y_MIN_PIN); - #if ENABLED(ENDSTOPPULLUP_YMIN) - WRITE(Y_MIN_PIN,HIGH); - #endif - #endif - - #if HAS_Z_MIN - SET_INPUT(Z_MIN_PIN); - #if ENABLED(ENDSTOPPULLUP_ZMIN) - WRITE(Z_MIN_PIN,HIGH); - #endif - #endif - - #if HAS_Z2_MIN - SET_INPUT(Z2_MIN_PIN); - #if ENABLED(ENDSTOPPULLUP_ZMIN) - WRITE(Z2_MIN_PIN,HIGH); - #endif - #endif - - #if HAS_X_MAX - SET_INPUT(X_MAX_PIN); - #if ENABLED(ENDSTOPPULLUP_XMAX) - WRITE(X_MAX_PIN,HIGH); - #endif - #endif - - #if HAS_Y_MAX - SET_INPUT(Y_MAX_PIN); - #if ENABLED(ENDSTOPPULLUP_YMAX) - WRITE(Y_MAX_PIN,HIGH); - #endif - #endif - - #if HAS_Z_MAX - SET_INPUT(Z_MAX_PIN); - #if ENABLED(ENDSTOPPULLUP_ZMAX) - WRITE(Z_MAX_PIN,HIGH); - #endif - #endif - - #if HAS_Z2_MAX - SET_INPUT(Z2_MAX_PIN); - #if ENABLED(ENDSTOPPULLUP_ZMAX) - WRITE(Z2_MAX_PIN,HIGH); - #endif - #endif - - #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. - SET_INPUT(Z_MIN_PROBE_PIN); - #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE) - WRITE(Z_MIN_PROBE_PIN,HIGH); - #endif - #endif + // + // Init endstops and pullups here + // + endstops.init(); #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) @@ -1083,17 +610,17 @@ void st_init() { SBI(TIMSK0, OCIE0A); #endif //ADVANCE - enable_endstops(true); // Start with endstops active. After homing they can be disabled + endstops.enable(true); // Start with endstops active. After homing they can be disabled sei(); - set_stepper_direction(); // Init directions to out_bits = 0 + set_directions(); // Init directions to last_direction_bits = 0 } /** * Block until all buffered steps are executed */ -void st_synchronize() { while (blocks_queued()) idle(); } +void Stepper::synchronize() { while (blocks_queued()) idle(); } /** * Set the stepper positions directly in steps @@ -1101,10 +628,10 @@ void st_synchronize() { while (blocks_queued()) idle(); } * The input is based on the typical per-axis XYZ steps. * For CORE machines XYZ needs to be translated to ABC. * - * This allows st_get_axis_position_mm to correctly + * This allows get_axis_position_mm to correctly * derive the current XYZ position later on. */ -void st_set_position(const long& x, const long& y, const long& z, const long& e) { +void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) { CRITICAL_SECTION_START; #if ENABLED(COREXY) @@ -1129,7 +656,7 @@ void st_set_position(const long& x, const long& y, const long& z, const long& e) CRITICAL_SECTION_END; } -void st_set_e_position(const long& e) { +void Stepper::set_e_position(const long& e) { CRITICAL_SECTION_START; count_position[E_AXIS] = e; CRITICAL_SECTION_END; @@ -1138,7 +665,7 @@ void st_set_e_position(const long& e) { /** * Get a stepper's position in steps. */ -long st_get_position(AxisEnum axis) { +long Stepper::position(AxisEnum axis) { CRITICAL_SECTION_START; long count_pos = count_position[axis]; CRITICAL_SECTION_END; @@ -1149,7 +676,7 @@ long st_get_position(AxisEnum axis) { * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. */ -float st_get_axis_position_mm(AxisEnum axis) { +float Stepper::get_axis_position_mm(AxisEnum axis) { float axis_steps; #if ENABLED(COREXY) | ENABLED(COREXZ) if (axis == X_AXIS || axis == CORE_AXIS_2) { @@ -1162,19 +689,19 @@ float st_get_axis_position_mm(AxisEnum axis) { axis_steps = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f; } else - axis_steps = st_get_position(axis); + axis_steps = position(axis); #else - axis_steps = st_get_position(axis); + axis_steps = position(axis); #endif return axis_steps / axis_steps_per_unit[axis]; } -void finishAndDisableSteppers() { - st_synchronize(); +void Stepper::finish_and_disable() { + synchronize(); disable_all_steppers(); } -void quickStop() { +void Stepper::quick_stop() { cleaning_buffer_counter = 5000; DISABLE_STEPPER_DRIVER_INTERRUPT(); while (blocks_queued()) plan_discard_current_block(); @@ -1182,11 +709,62 @@ void quickStop() { ENABLE_STEPPER_DRIVER_INTERRUPT(); } +void Stepper::endstop_triggered(AxisEnum axis) { + + #if ENABLED(COREXY) || ENABLED(COREXZ) + + float axis_pos = count_position[axis]; + if (axis == A_AXIS) + axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; + else if (axis == CORE_AXIS_2) + axis_pos = (count_position[A_AXIS] - axis_pos) / 2; + endstops_trigsteps[axis] = axis_pos; + + #else // !COREXY && !COREXZ + + endstops_trigsteps[axis] = count_position[axis]; + + #endif // !COREXY && !COREXZ + + kill_current_block(); +} + +void Stepper::report_positions() { + CRITICAL_SECTION_START; + long xpos = count_position[X_AXIS], + ypos = count_position[Y_AXIS], + zpos = count_position[Z_AXIS]; + CRITICAL_SECTION_END; + + #if ENABLED(COREXY) || ENABLED(COREXZ) + SERIAL_PROTOCOLPGM(MSG_COUNT_A); + #else + SERIAL_PROTOCOLPGM(MSG_COUNT_X); + #endif + SERIAL_PROTOCOL(xpos); + + #if ENABLED(COREXY) || ENABLED(COREXZ) + SERIAL_PROTOCOLPGM(" B:"); + #else + SERIAL_PROTOCOLPGM(" Y:"); + #endif + SERIAL_PROTOCOL(ypos); + + #if ENABLED(COREXZ) || ENABLED(COREXZ) + SERIAL_PROTOCOLPGM(" C:"); + #else + SERIAL_PROTOCOLPGM(" Z:"); + #endif + SERIAL_PROTOCOL(zpos); + + SERIAL_EOL; +} + #if ENABLED(BABYSTEPPING) // MUST ONLY BE CALLED BY AN ISR, // No other ISR should ever interrupt this! - void babystep(const uint8_t axis, const bool direction) { + void Stepper::babystep(const uint8_t axis, const bool direction) { #define _ENABLE(axis) enable_## axis() #define _READ_DIR(AXIS) AXIS ##_DIR_READ @@ -1256,10 +834,14 @@ void quickStop() { #endif //BABYSTEPPING +/** + * Software-controlled Stepper Motor Current + */ + #if HAS_DIGIPOTSS // From Arduino DigitalPotControl example - void digitalPotWrite(int address, int value) { + void Stepper::digitalPotWrite(int address, int value) { digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(value); @@ -1269,8 +851,7 @@ void quickStop() { #endif //HAS_DIGIPOTSS -// Initialize Digipot Motor Current -void digipot_init() { +void Stepper::digipot_init() { #if HAS_DIGIPOTSS const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; @@ -1299,7 +880,7 @@ void digipot_init() { #endif } -void digipot_current(uint8_t driver, int current) { +void Stepper::digipot_current(uint8_t driver, int current) { #if HAS_DIGIPOTSS const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; digitalPotWrite(digipot_ch[driver], current); @@ -1322,7 +903,7 @@ void digipot_current(uint8_t driver, int current) { #endif } -void microstep_init() { +void Stepper::microstep_init() { #if HAS_MICROSTEPS_E1 pinMode(E1_MS1_PIN, OUTPUT); pinMode(E1_MS2_PIN, OUTPUT); @@ -1343,7 +924,11 @@ void microstep_init() { #endif } -void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { +/** + * Software-controlled Microstepping + */ + +void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { if (ms1 >= 0) switch (driver) { case 0: digitalWrite(X_MS1_PIN, ms1); break; case 1: digitalWrite(Y_MS1_PIN, ms1); break; @@ -1364,7 +949,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) { } } -void microstep_mode(uint8_t driver, uint8_t stepping_mode) { +void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) { switch (stepping_mode) { case 1: microstep_ms(driver, MICROSTEP1); break; case 2: microstep_ms(driver, MICROSTEP2); break; @@ -1374,7 +959,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode) { } } -void microstep_readings() { +void Stepper::microstep_readings() { SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL(digitalRead(X_MS1_PIN)); @@ -1396,7 +981,7 @@ void microstep_readings() { } #if ENABLED(Z_DUAL_ENDSTOPS) - void In_Homing_Process(bool state) { performing_homing = state; } - void Lock_z_motor(bool state) { locked_z_motor = state; } - void Lock_z2_motor(bool state) { locked_z2_motor = state; } + void Stepper::set_homing_flag(bool state) { performing_homing = state; } + void Stepper::set_z_lock(bool state) { locked_z_motor = state; } + void Stepper::set_z2_lock(bool state) { locked_z2_motor = state; } #endif diff --git a/Marlin/stepper.h b/Marlin/stepper.h index b0230b8cd2..3efad54694 100644 --- a/Marlin/stepper.h +++ b/Marlin/stepper.h @@ -21,90 +21,313 @@ */ /** - stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors - Part of Grbl + * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors + * Part of Grbl + * + * Copyright (c) 2009-2011 Simen Svale Skogsrud + * + * Grbl is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * Grbl is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with Grbl. If not, see . + */ - Copyright (c) 2009-2011 Simen Svale Skogsrud - - Grbl is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - Grbl is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with Grbl. If not, see . -*/ - -#ifndef stepper_h -#define stepper_h +#ifndef STEPPER_H +#define STEPPER_H #include "planner.h" +#include "speed_lookuptable.h" #include "stepper_indirection.h" +#include "language.h" -#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - extern bool abort_on_endstop_hit; -#endif +class Stepper; +extern Stepper stepper; -// Initialize and start the stepper motor subsystem -void st_init(); +// intRes = intIn1 * intIn2 >> 16 +// uses: +// r26 to store 0 +// r27 to store the byte 1 of the 24 bit result +#define MultiU16X8toH16(intRes, charIn1, intIn2) \ + asm volatile ( \ + "clr r26 \n\t" \ + "mul %A1, %B2 \n\t" \ + "movw %A0, r0 \n\t" \ + "mul %A1, %A2 \n\t" \ + "add %A0, r1 \n\t" \ + "adc %B0, r26 \n\t" \ + "lsr r0 \n\t" \ + "adc %A0, r26 \n\t" \ + "adc %B0, r26 \n\t" \ + "clr r1 \n\t" \ + : \ + "=&r" (intRes) \ + : \ + "d" (charIn1), \ + "d" (intIn2) \ + : \ + "r26" \ + ) -// Block until all buffered steps are executed -void st_synchronize(); +class Stepper { -// Set current position in steps -void st_set_position(const long& x, const long& y, const long& z, const long& e); -void st_set_e_position(const long& e); + public: -// Get current position in steps -long st_get_position(AxisEnum axis); + block_t* current_block = NULL; // A pointer to the block currently being traced -// Get current axis position in mm -float st_get_axis_position_mm(AxisEnum axis); + #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) + bool abort_on_endstop_hit = false; + #endif -// The stepper subsystem goes to sleep when it runs out of things to execute. Call this -// to notify the subsystem that it is time to go to work. -void st_wake_up(); + #if ENABLED(Z_DUAL_ENDSTOPS) + bool performing_homing = false; + #endif + #if ENABLED(ADVANCE) + long e_steps[4]; + #endif -void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered -void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops(); + private: -void enable_endstops(bool check); // Enable/disable endstop checking + unsigned char last_direction_bits = 0; // The next stepping-bits to be output + unsigned int cleaning_buffer_counter = 0; -void enable_endstops_globally(bool check); -void endstops_not_homing(); + #if ENABLED(Z_DUAL_ENDSTOPS) + bool locked_z_motor = false, + locked_z2_motor = false; + #endif -void checkStepperErrors(); //Print errors detected by the stepper + // Counter variables for the Bresenham line tracer + long counter_X = 0, counter_Y = 0, counter_Z = 0, counter_E = 0; + volatile unsigned long step_events_completed = 0; // The number of step events executed in the current block -void finishAndDisableSteppers(); + #if ENABLED(ADVANCE) + unsigned char old_OCR0A; + long advance_rate, advance, final_advance = 0; + long old_advance = 0; + #endif -extern block_t* current_block; // A pointer to the block currently being traced + long acceleration_time, deceleration_time; + //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; + unsigned short acc_step_rate; // needed for deceleration start point + uint8_t step_loops; + uint8_t step_loops_nominal; + unsigned short OCR1A_nominal; -void quickStop(); + volatile long endstops_trigsteps[3]; + volatile long endstops_stepsTotal, endstops_stepsDone; -#if HAS_DIGIPOTSS - void digitalPotWrite(int address, int value); -#endif -void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2); -void microstep_mode(uint8_t driver, uint8_t stepping); -void digipot_init(); -void digipot_current(uint8_t driver, int current); -void microstep_init(); -void microstep_readings(); + #if HAS_MOTOR_CURRENT_PWM + #ifndef PWM_MOTOR_CURRENT + #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT + #endif + const int motor_current_setting[3] = PWM_MOTOR_CURRENT; + #endif -#if ENABLED(Z_DUAL_ENDSTOPS) - void In_Homing_Process(bool state); - void Lock_z_motor(bool state); - void Lock_z2_motor(bool state); -#endif + // + // Positions of stepper motors, in step units + // + volatile long count_position[NUM_AXIS] = { 0 }; -#if ENABLED(BABYSTEPPING) - void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention -#endif + // + // Current direction of stepper motors (+1 or -1) + // + volatile signed char count_direction[NUM_AXIS] = { 1 }; -#endif + public: + + // + // Constructor / initializer + // + Stepper() {}; + + // + // Initialize stepper hardware + // + void init(); + + // + // Interrupt Service Routines + // + + void isr(); + + #if ENABLED(ADVANCE) + void advance_isr(); + #endif + + // + // Block until all buffered steps are executed + // + void synchronize(); + + // + // Set the current position in steps + // + void set_position(const long& x, const long& y, const long& z, const long& e); + void set_e_position(const long& e); + + // + // Set direction bits for all steppers + // + void set_directions(); + + // + // Get the position of a stepper, in steps + // + long position(AxisEnum axis); + + // + // Report the positions of the steppers, in steps + // + void report_positions(); + + // + // Get the position (mm) of an axis based on stepper position(s) + // + float get_axis_position_mm(AxisEnum axis); + + // + // The stepper subsystem goes to sleep when it runs out of things to execute. Call this + // to notify the subsystem that it is time to go to work. + // + void wake_up(); + + // + // Wait for moves to finish and disable all steppers + // + void finish_and_disable(); + + // + // Quickly stop all steppers and clear the blocks queue + // + void quick_stop(); + + // + // The direction of a single motor + // + FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); } + + #if HAS_DIGIPOTSS + void digitalPotWrite(int address, int value); + #endif + void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2); + void digipot_current(uint8_t driver, int current); + void microstep_readings(); + + #if ENABLED(Z_DUAL_ENDSTOPS) + void set_homing_flag(bool state); + void set_z_lock(bool state); + void set_z2_lock(bool state); + #endif + + #if ENABLED(BABYSTEPPING) + void babystep(const uint8_t axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention + #endif + + inline void kill_current_block() { + step_events_completed = current_block->step_event_count; + } + + // + // Handle a triggered endstop + // + void endstop_triggered(AxisEnum axis); + + // + // Triggered position of an axis in mm (not core-savvy) + // + FORCE_INLINE float triggered_position_mm(AxisEnum axis) { + return endstops_trigsteps[axis] / axis_steps_per_unit[axis]; + } + + FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { + unsigned short timer; + + NOMORE(step_rate, MAX_STEP_FREQUENCY); + + if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times + step_rate = (step_rate >> 2) & 0x3fff; + step_loops = 4; + } + else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times + step_rate = (step_rate >> 1) & 0x7fff; + step_loops = 2; + } + else { + step_loops = 1; + } + + NOLESS(step_rate, F_CPU / 500000); + step_rate -= F_CPU / 500000; // Correct for minimal speed + if (step_rate >= (8 * 256)) { // higher step rate + unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0]; + unsigned char tmp_step_rate = (step_rate & 0x00ff); + unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2); + MultiU16X8toH16(timer, tmp_step_rate, gain); + timer = (unsigned short)pgm_read_word_near(table_address) - timer; + } + else { // lower step rates + unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; + table_address += ((step_rate) >> 1) & 0xfffc; + timer = (unsigned short)pgm_read_word_near(table_address); + timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3); + } + if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen) + return timer; + } + + // Initializes the trapezoid generator from the current block. Called whenever a new + // block begins. + FORCE_INLINE void trapezoid_generator_reset() { + + static int8_t last_extruder = -1; + + if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) { + last_direction_bits = current_block->direction_bits; + last_extruder = current_block->active_extruder; + set_directions(); + } + + #if ENABLED(ADVANCE) + advance = current_block->initial_advance; + final_advance = current_block->final_advance; + // Do E steps + advance steps + e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); + old_advance = advance >>8; + #endif + deceleration_time = 0; + // step_rate to timer interval + OCR1A_nominal = calc_timer(current_block->nominal_rate); + // make a note of the number of step loops required at nominal speed + step_loops_nominal = step_loops; + acc_step_rate = current_block->initial_rate; + acceleration_time = calc_timer(acc_step_rate); + OCR1A = acceleration_time; + + // SERIAL_ECHO_START; + // SERIAL_ECHOPGM("advance :"); + // SERIAL_ECHO(current_block->advance/256.0); + // SERIAL_ECHOPGM("advance rate :"); + // SERIAL_ECHO(current_block->advance_rate/256.0); + // SERIAL_ECHOPGM("initial advance :"); + // SERIAL_ECHO(current_block->initial_advance/256.0); + // SERIAL_ECHOPGM("final advance :"); + // SERIAL_ECHOLN(current_block->final_advance/256.0); + } + + private: + void microstep_mode(uint8_t driver, uint8_t stepping); + void digipot_init(); + void microstep_init(); + +}; + +#endif // STEPPER_H \ No newline at end of file diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp index 5713cb6937..de61e63304 100644 --- a/Marlin/temperature.cpp +++ b/Marlin/temperature.cpp @@ -604,7 +604,7 @@ float get_pid_output(int e) { #if ENABLED(PID_ADD_EXTRUSION_RATE) cTerm[e] = 0; if (e == active_extruder) { - long e_position = st_get_position(E_AXIS); + long e_position = stepper.position(E_AXIS); if (e_position > last_position[e]) { lpq[lpq_ptr++] = e_position - last_position[e]; last_position[e] = e_position; diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 97a07f5232..33ede883a0 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -476,7 +476,7 @@ inline void line_to_current(AxisEnum axis) { static void lcd_sdcard_resume() { card.startFileprint(); } static void lcd_sdcard_stop() { - quickStop(); + stepper.quick_stop(); card.sdprinting = false; card.closefile(); autotempShutdown(); @@ -911,7 +911,7 @@ void lcd_cooldown() { current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; line_to_current(Z_AXIS); #endif - st_synchronize(); + stepper.synchronize(); } static void _lcd_level_goto_next_point(); @@ -964,7 +964,7 @@ void lcd_cooldown() { #endif ; line_to_current(Z_AXIS); - st_synchronize(); + stepper.synchronize(); mbl.active = true; enqueue_and_echo_commands_P(PSTR("G28"));