diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp
index aa4b0fb39a..4b4f6e5c0f 100644
--- a/Marlin/G26_Mesh_Validation_Tool.cpp
+++ b/Marlin/G26_Mesh_Validation_Tool.cpp
@@ -600,7 +600,7 @@
 
     // If the end point of the line is closer to the nozzle, flip the direction,
     // moving from the end to the start. On very small lines the optimization isn't worth it.
-    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
+    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
       return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
     }
 
diff --git a/Marlin/I2CPositionEncoder.cpp b/Marlin/I2CPositionEncoder.cpp
index 212e34f752..8f226d9635 100644
--- a/Marlin/I2CPositionEncoder.cpp
+++ b/Marlin/I2CPositionEncoder.cpp
@@ -126,16 +126,16 @@
     }
 
     lastPosition = position;
-    unsigned long positionTime = millis();
+    millis_t positionTime = millis();
 
     //only do error correction if setup and enabled
     if (ec && ecMethod != I2CPE_ECM_NONE) {
 
       #if defined(I2CPE_EC_THRESH_PROPORTIONAL)
+        millis_t deltaTime = positionTime - lastPositionTime;
         unsigned long distance = abs(position - lastPosition);
-        unsigned long deltaTime = positionTime - lastPositionTime;
         unsigned long speed = distance / deltaTime;
-        float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
+        float threshold = constrain(speed / 50, 1, 50) * ecThreshold;
       #else
         float threshold = get_error_correct_threshold();
       #endif
@@ -162,7 +162,7 @@
       //SERIAL_ECHOLN(error);
 
       #if defined(I2CPE_ERR_THRESH_ABORT)
-        if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
+        if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
           //kill("Significant Error");
           SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
           SERIAL_ECHOLN(error);
@@ -174,29 +174,32 @@
         if (errIdx == 0) {
           // in order to correct for "error" but avoid correcting for noise and non skips
           // it must be > threshold and have a difference average of < 10 and be < 2000 steps
-          if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
-              diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip)
+          if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
+              diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip)
             SERIAL_ECHO(axis_codes[encoderAxis]);
-            SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1));
+            SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1));
             SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
             SERIAL_ECHOLNPGM("mm; correcting!");
-            thermalManager.babystepsTodo[encoderAxis] = -lround(error);
+            thermalManager.babystepsTodo[encoderAxis] = -LROUND(error);
           }
         }
       #else
-        if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
+        if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
           //SERIAL_ECHOLN(error);
           //SERIAL_ECHOLN(position);
-          thermalManager.babystepsTodo[encoderAxis] = -lround(error/2);
+          thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2);
         }
       #endif
 
-      if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) {
-        SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
-        SERIAL_ECHOPAIR(" axis. error: ", (int)error);
-        SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
-        errorCount++;
-        lastErrorCountTime = millis();
+      if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) {
+        const millis_t ms = millis();
+        if (ELAPSED(ms, nextErrorCountTime)) {
+          SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
+          SERIAL_ECHOPAIR(" axis. error: ", (int)error);
+          SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
+          errorCount++;
+          nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
+        }
       }
     }
 
@@ -255,7 +258,7 @@
     actual = mm_from_count(position);
     error = actual - target;
 
-    if (abs(error) > 10000) error = 0; // ?
+    if (labs(error) > 10000) error = 0; // ?
 
     if (report) {
       SERIAL_ECHO(axis_codes[encoderAxis]);
@@ -284,13 +287,13 @@
     stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
 
     //convert both 'ticks' into same units / base
-    encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
+    encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
 
     long target = stepper.position(encoderAxis),
          error = (encoderCountInStepperTicksScaled - target);
 
     //suppress discontinuities (might be caused by bad I2C readings...?)
-    bool suppressOutput = (abs(error - errorPrev) > 100);
+    bool suppressOutput = (labs(error - errorPrev) > 100);
 
     if (report) {
       SERIAL_ECHO(axis_codes[encoderAxis]);
diff --git a/Marlin/I2CPositionEncoder.h b/Marlin/I2CPositionEncoder.h
index a4b7eb3adb..fe0be390a5 100644
--- a/Marlin/I2CPositionEncoder.h
+++ b/Marlin/I2CPositionEncoder.h
@@ -136,7 +136,7 @@
                     position;
 
     unsigned long   lastPositionTime        = 0,
-                    lastErrorCountTime      = 0,
+                    nextErrorCountTime      = 0,
                     lastErrorTime;
 
     //double        positionMm; //calculate
diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index 5a9b3191d5..6bb45698e6 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -210,7 +210,7 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
 /**
  * Feedrate scaling and conversion
  */
-extern int feedrate_percentage;
+extern int16_t feedrate_percentage;
 
 #define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
 #define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
@@ -218,7 +218,7 @@ extern int feedrate_percentage;
 
 extern bool axis_relative_modes[];
 extern bool volumetric_enabled;
-extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
+extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
 extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
 extern bool axis_known_position[XYZ];
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index f895ee46c0..7399e56dd2 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -421,7 +421,7 @@ FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&ho
 
 float feedrate_mm_s = MMM_TO_MMS(1500.0);
 static float saved_feedrate_mm_s;
-int feedrate_percentage = 100, saved_feedrate_percentage,
+int16_t feedrate_percentage = 100, saved_feedrate_percentage,
     flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
 
 bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
@@ -2968,7 +2968,7 @@ static void homeaxis(const AxisEnum axis) {
 
   #if ENABLED(Z_DUAL_ENDSTOPS)
     if (axis == Z_AXIS) {
-      float adj = fabs(z_endstop_adj);
+      float adj = FABS(z_endstop_adj);
       bool lockZ1;
       if (axis_home_dir > 0) {
         adj = -adj;
@@ -3293,7 +3293,7 @@ inline void gcode_G0_G1(
           const float e = clockwise ^ (r < 0) ? -1 : 1,           // clockwise -1/1, counterclockwise 1/-1
                       dx = x2 - x1, dy = y2 - y1,                 // X and Y differences
                       d = HYPOT(dx, dy),                          // Linear distance between the points
-                      h = sqrt(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
+                      h = SQRT(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
                       mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
                       sx = -dy / d, sy = dx / d,                  // Slope of the perpendicular bisector
                       cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
@@ -3448,7 +3448,7 @@ inline void gcode_G4() {
     const float mlx = max_length(X_AXIS),
                 mly = max_length(Y_AXIS),
                 mlratio = mlx > mly ? mly / mlx : mlx / mly,
-                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * sqrt(sq(mlratio) + 1.0);
+                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
 
     do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -4605,8 +4605,8 @@ void home_all_axes() { gcode_G28(true); }
           const float xBase = xCount * xGridSpacing + left_probe_bed_position,
                       yBase = yCount * yGridSpacing + front_probe_bed_position;
 
-          xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
-          yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
+          xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
+          yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 
           #if ENABLED(AUTO_BED_LEVELING_LINEAR)
             indexIntoAB[xCount][yCount] = abl_probe_index;
@@ -4710,8 +4710,8 @@ void home_all_axes() { gcode_G28(true); }
             float xBase = left_probe_bed_position + xGridSpacing * xCount,
                   yBase = front_probe_bed_position + yGridSpacing * yCount;
 
-            xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
-            yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
+            xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
+            yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 
             #if ENABLED(AUTO_BED_LEVELING_LINEAR)
               indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
@@ -5263,7 +5263,7 @@ void home_all_axes() { gcode_G28(true); }
             N++;
           }
         zero_std_dev_old = zero_std_dev;
-        zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
+        zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
 
         if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
 
@@ -5464,7 +5464,7 @@ void home_all_axes() { gcode_G28(true); }
     float retract_mm[XYZ];
     LOOP_XYZ(i) {
       float dist = destination[i] - current_position[i];
-      retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
+      retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
     }
 
     stepper.synchronize();  // wait until the machine is idle
@@ -5528,7 +5528,7 @@ void home_all_axes() { gcode_G28(true); }
 
     // If any axis has enough movement, do the move
     LOOP_XYZ(i)
-      if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
+      if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
         if (!parser.seen('F')) feedrate_mm_s = homing_feedrate(i);
         // If G38.2 fails throw an error
         if (!G38_run_probe() && is_38_2) {
@@ -6851,7 +6851,7 @@ inline void gcode_M42() {
       for (uint8_t j = 0; j <= n; j++)
         sum += sq(sample_set[j] - mean);
 
-      sigma = sqrt(sum / (n + 1));
+      sigma = SQRT(sum / (n + 1));
       if (verbose_level > 0) {
         if (verbose_level > 1) {
           SERIAL_PROTOCOL(n + 1);
@@ -7266,7 +7266,7 @@ inline void gcode_M109() {
 
     #if TEMP_RESIDENCY_TIME > 0
 
-      const float temp_diff = fabs(target_temp - temp);
+      const float temp_diff = FABS(target_temp - temp);
 
       if (!residency_start_ms) {
         // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
@@ -7395,7 +7395,7 @@ inline void gcode_M109() {
 
       #if TEMP_BED_RESIDENCY_TIME > 0
 
-        const float temp_diff = fabs(target_temp - temp);
+        const float temp_diff = FABS(target_temp - temp);
 
         if (!residency_start_ms) {
           // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
@@ -9252,7 +9252,7 @@ inline void gcode_M503() {
 
       #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
         if (!no_babystep && leveling_is_active())
-          thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
+          thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
       #else
         UNUSED(no_babystep);
       #endif
@@ -11171,7 +11171,7 @@ void ok_to_send() {
     if (last_x != x) {
       last_x = x;
       ratio_x = x * ABL_BG_FACTOR(X_AXIS);
-      const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
+      const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
       ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
 
       #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
@@ -11188,7 +11188,7 @@ void ok_to_send() {
       if (last_y != y) {
         last_y = y;
         ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
-        const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
+        const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
         ratio_y -= gy;
 
         #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
@@ -11221,7 +11221,7 @@ void ok_to_send() {
 
     /*
     static float last_offset = 0;
-    if (fabs(last_offset - offset) > 0.2) {
+    if (FABS(last_offset - offset) > 0.2) {
       SERIAL_ECHOPGM("Sudden Shift at ");
       SERIAL_ECHOPAIR("x=", x);
       SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
@@ -11290,7 +11290,7 @@ void ok_to_send() {
 
   #else
 
-    #define _SQRT(n) sqrt(n)
+    #define _SQRT(n) SQRT(n)
 
   #endif
 
@@ -11364,7 +11364,7 @@ void ok_to_send() {
     float distance = delta[A_AXIS];
     cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
     inverse_kinematics(cartesian);
-    return abs(distance - delta[A_AXIS]);
+    return FABS(distance - delta[A_AXIS]);
   }
 
   /**
@@ -11397,7 +11397,7 @@ void ok_to_send() {
     float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
 
     // Get the Magnitude of vector.
-    float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
+    float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
 
     // Create unit vector by dividing by magnitude.
     float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
@@ -11416,7 +11416,7 @@ void ok_to_send() {
     float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
 
     // The magnitude of Y component
-    float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
+    float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
 
     // Convert to a unit vector
     ey[0] /= j; ey[1] /= j;  ey[2] /= j;
@@ -11433,7 +11433,7 @@ void ok_to_send() {
     // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
     float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
           Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
-          Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
+          Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
 
     // Start from the origin of the old coordinates and add vectors in the
     // old coords that represent the Xnew, Ynew and Znew to find the point
@@ -11656,10 +11656,10 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
     };
 
     // Get the linear distance in XYZ
-    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
+    float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 
     // If the move is very short, check the E move distance
-    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
+    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
 
     // No E move either? Game over.
     if (UNEAR_ZERO(cartesian_mm)) return true;
@@ -11947,7 +11947,7 @@ void prepare_move_to_destination() {
                 extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
 
     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
-    float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
+    float angular_travel = ATAN2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
     if (angular_travel < 0) angular_travel += RADIANS(360);
     if (clockwise) angular_travel -= RADIANS(360);
 
@@ -11955,10 +11955,10 @@ void prepare_move_to_destination() {
     if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
       angular_travel += RADIANS(360);
 
-    const float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
+    const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
     if (mm_of_travel < 0.001) return;
 
-    uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
+    uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
     if (segments == 0) segments = 1;
 
     /**
@@ -12155,7 +12155,7 @@ void prepare_move_to_destination() {
     else
       C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
 
-    S2 = sqrt(1 - sq(C2));
+    S2 = SQRT(1 - sq(C2));
 
     // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
     SK1 = L1 + L2 * C2;
@@ -12164,10 +12164,10 @@ void prepare_move_to_destination() {
     SK2 = L2 * S2;
 
     // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
-    THETA = atan2(SK1, SK2) - atan2(sx, sy);
+    THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
 
     // Angle of Arm2
-    PSI = atan2(S2, C2);
+    PSI = ATAN2(S2, C2);
 
     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
diff --git a/Marlin/digipot_mcp4018.cpp b/Marlin/digipot_mcp4018.cpp
index a13302b034..db8070a73e 100644
--- a/Marlin/digipot_mcp4018.cpp
+++ b/Marlin/digipot_mcp4018.cpp
@@ -44,7 +44,7 @@
 #define DIGIPOT_A4988_MAX_CURRENT       (DIGIPOT_A4988_Itripmax(DIGIPOT_A4988_Vrefmax) - 0.5)
 
 static byte current_to_wiper(const float current) {
-  return byte(ceil(float(DIGIPOT_A4988_FACTOR) * current));
+  return byte(CEIL(float(DIGIPOT_A4988_FACTOR) * current));
 }
 
 const uint8_t sda_pins[DIGIPOT_I2C_NUM_CHANNELS] = {
diff --git a/Marlin/digipot_mcp4451.cpp b/Marlin/digipot_mcp4451.cpp
index 6e94778cf2..d79915cc94 100644
--- a/Marlin/digipot_mcp4451.cpp
+++ b/Marlin/digipot_mcp4451.cpp
@@ -38,7 +38,7 @@
 #endif
 
 static byte current_to_wiper(const float current) {
-  return byte(ceil(float((DIGIPOT_I2C_FACTOR * current))));
+  return byte(CEIL(float((DIGIPOT_I2C_FACTOR * current))));
 }
 
 static void i2c_send(const byte addr, const byte a, const byte b) {
diff --git a/Marlin/gcode.h b/Marlin/gcode.h
index 3001b8b2e0..1cd1cfabcf 100644
--- a/Marlin/gcode.h
+++ b/Marlin/gcode.h
@@ -213,7 +213,7 @@ public:
           linear_unit_factor = 1.0;
           break;
       }
-      volumetric_unit_factor = pow(linear_unit_factor, 3.0);
+      volumetric_unit_factor = POW(linear_unit_factor, 3.0);
     }
 
     inline static float axis_unit_factor(const AxisEnum axis) {
diff --git a/Marlin/least_squares_fit.cpp b/Marlin/least_squares_fit.cpp
index 9d1d84a2a8..42adc8fe68 100644
--- a/Marlin/least_squares_fit.cpp
+++ b/Marlin/least_squares_fit.cpp
@@ -59,7 +59,7 @@ int finish_incremental_LSF(struct linear_fit_data *lsf) {
   lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
   const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
 
-  if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
+  if (FABS(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
     return 1;
 
   lsf->A = (lsf->yzbar * lsf->xybar - lsf->xzbar * lsf->y2bar) / DD;
diff --git a/Marlin/least_squares_fit.h b/Marlin/least_squares_fit.h
index a5da16a8a7..bdb4271597 100644
--- a/Marlin/least_squares_fit.h
+++ b/Marlin/least_squares_fit.h
@@ -65,8 +65,8 @@ void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const
   lsf->xzbar += w * x * z;
   lsf->yzbar += w * y * z;
   lsf->N     += w;
-  lsf->max_absx = max(fabs(w * x), lsf->max_absx);
-  lsf->max_absy = max(fabs(w * y), lsf->max_absy);
+  lsf->max_absx = max(FABS(w * x), lsf->max_absx);
+  lsf->max_absy = max(FABS(w * y), lsf->max_absy);
 }
 
 void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
@@ -79,8 +79,8 @@ void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const f
   lsf->xybar += x * y;
   lsf->xzbar += x * z;
   lsf->yzbar += y * z;
-  lsf->max_absx = max(fabs(x), lsf->max_absx);
-  lsf->max_absy = max(fabs(y), lsf->max_absy);
+  lsf->max_absx = max(FABS(x), lsf->max_absx);
+  lsf->max_absy = max(FABS(y), lsf->max_absy);
   lsf->N += 1.0;
 }
 
diff --git a/Marlin/macros.h b/Marlin/macros.h
index f1575cad12..3b79ba9b83 100644
--- a/Marlin/macros.h
+++ b/Marlin/macros.h
@@ -106,7 +106,6 @@
 #define RADIANS(d) ((d)*M_PI/180.0)
 #define DEGREES(r) ((r)*180.0/M_PI)
 #define HYPOT2(x,y) (sq(x)+sq(y))
-#define HYPOT(x,y) sqrt(HYPOT2(x,y))
 
 #define SIGN(a) ((a>0)-(a<0))
 
@@ -193,4 +192,17 @@
 #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x))
 #define FIXFLOAT(f) (f + 0.00001)
 
-#endif // __MACROS_H
+//
+// Maths macros that can be overridden by HAL
+//
+#define ATAN2(y, x) atan2(y, x)
+#define FABS(x)     fabs(x)
+#define POW(x, y)   pow(x, y)
+#define SQRT(x)     sqrt(x)
+#define CEIL(x)     ceil(x)
+#define FLOOR(x)    floor(x)
+#define LROUND(x)   lround(x)
+#define FMOD(x, y)  fmod(x, y)
+#define HYPOT(x,y)  SQRT(HYPOT2(x,y))
+
+#endif //__MACROS_H
diff --git a/Marlin/nozzle.cpp b/Marlin/nozzle.cpp
index e5706e862a..eec8bfa39a 100644
--- a/Marlin/nozzle.cpp
+++ b/Marlin/nozzle.cpp
@@ -80,16 +80,16 @@ void Nozzle::zigzag(
 
     for (uint8_t j = 0; j < strokes; j++) {
       for (uint8_t i = 0; i < (objects << 1); i++) {
-        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
-        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
+        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
+        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 
         do_blocking_move_to_xy(x, y);
         if (i == 0) do_blocking_move_to_z(start.z);
       }
 
       for (int i = (objects << 1); i > -1; i--) {
-        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
-        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
+        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
+        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 
         do_blocking_move_to_xy(x, y);
       }
diff --git a/Marlin/nozzle.h b/Marlin/nozzle.h
index 39c007f632..2fbe98fb06 100644
--- a/Marlin/nozzle.h
+++ b/Marlin/nozzle.h
@@ -29,8 +29,8 @@
 #if ENABLED(NOZZLE_CLEAN_FEATURE)
   constexpr float nozzle_clean_start_point[4] = NOZZLE_CLEAN_START_POINT,
                   nozzle_clean_end_point[4] = NOZZLE_CLEAN_END_POINT,
-                  nozzle_clean_length = fabs(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
-                  nozzle_clean_height = fabs(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
+                  nozzle_clean_length = FABS(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
+                  nozzle_clean_height = FABS(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
   constexpr bool nozzle_clean_horizontal = nozzle_clean_length >= nozzle_clean_height; //whether to zig-zag horizontally or vertically
 #endif // NOZZLE_CLEAN_FEATURE
 
diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index 537f334606..5897e4fe6a 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -178,23 +178,23 @@ void Planner::init() {
  * by the provided factors.
  */
 void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
-  uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
-           final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
+  uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
+           final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
 
   // Limit minimal step rate (Otherwise the timer will overflow.)
   NOLESS(initial_rate, MINIMAL_STEP_RATE);
   NOLESS(final_rate, MINIMAL_STEP_RATE);
 
   int32_t accel = block->acceleration_steps_per_s2,
-          accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
-          decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
+          accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
+          decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
           plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
 
   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
   // have to use intersection_distance() to calculate when to abort accel and start braking
   // in order to reach the final_rate exactly at the end of this block.
   if (plateau_steps < 0) {
-    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
+    accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
     NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
     accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
     plateau_steps = 0;
@@ -221,8 +221,8 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
 // This method will calculate the junction jerk as the euclidean distance between the nominal
 // velocities of the respective blocks.
 //inline float junction_jerk(block_t *before, block_t *after) {
-//  return sqrt(
-//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
+//  return SQRT(
+//    POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
 //}
 
 
@@ -693,22 +693,22 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   // Calculate target position in absolute steps
   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
   const long target[XYZE] = {
-    lround(a * axis_steps_per_mm[X_AXIS]),
-    lround(b * axis_steps_per_mm[Y_AXIS]),
-    lround(c * axis_steps_per_mm[Z_AXIS]),
-    lround(e * axis_steps_per_mm[E_AXIS_N])
+    LROUND(a * axis_steps_per_mm[X_AXIS]),
+    LROUND(b * axis_steps_per_mm[Y_AXIS]),
+    LROUND(c * axis_steps_per_mm[Z_AXIS]),
+    LROUND(e * axis_steps_per_mm[E_AXIS_N])
   };
 
   // When changing extruders recalculate steps corresponding to the E position
   #if ENABLED(DISTINCT_E_FACTORS)
     if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
-      position[E_AXIS] = lround(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
+      position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
       last_extruder = extruder;
     }
   #endif
 
   #if ENABLED(LIN_ADVANCE)
-    const float mm_D_float = sqrt(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
+    const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
   #endif
 
   const long da = target[X_AXIS] - position[X_AXIS],
@@ -1036,10 +1036,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
 
   if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
-    block->millimeters = fabs(delta_mm[E_AXIS]);
+    block->millimeters = FABS(delta_mm[E_AXIS]);
   }
   else {
-    block->millimeters = sqrt(
+    block->millimeters = SQRT(
       #if CORE_IS_XY
         sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
       #elif CORE_IS_XZ
@@ -1061,15 +1061,15 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
   #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
     // Segment time im micro seconds
-    unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
+    unsigned long segment_time = LROUND(1000000.0 / inverse_mm_s);
   #endif
   #if ENABLED(SLOWDOWN)
     if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
       if (segment_time < min_segment_time) {
         // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
-        inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
+        inverse_mm_s = 1000000.0 / (segment_time + LROUND(2 * (min_segment_time - segment_time) / moves_queued));
         #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
-          segment_time = lround(1000000.0 / inverse_mm_s);
+          segment_time = LROUND(1000000.0 / inverse_mm_s);
         #endif
       }
     }
@@ -1082,7 +1082,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   #endif
 
   block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
-  block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
+  block->nominal_rate = CEIL(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
 
   #if ENABLED(FILAMENT_WIDTH_SENSOR)
     static float filwidth_e_count = 0, filwidth_delay_dist = 0;
@@ -1121,7 +1121,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   // Calculate and limit speed in mm/sec for each axis
   float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
   LOOP_XYZE(i) {
-    const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
+    const float cs = FABS(current_speed[i] = delta_mm[i] * inverse_mm_s);
     #if ENABLED(DISTINCT_E_FACTORS)
       if (i == E_AXIS) i += extruder;
     #endif
@@ -1134,7 +1134,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
     // Check and limit the xy direction change frequency
     const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
     old_direction_bits = block->direction_bits;
-    segment_time = lround((float)segment_time / speed_factor);
+    segment_time = LROUND((float)segment_time / speed_factor);
 
     long xs0 = axis_segment_time[X_AXIS][0],
          xs1 = axis_segment_time[X_AXIS][1],
@@ -1178,7 +1178,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   uint32_t accel;
   if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
     // convert to: acceleration steps/sec^2
-    accel = ceil(retract_acceleration * steps_per_mm);
+    accel = CEIL(retract_acceleration * steps_per_mm);
   }
   else {
     #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
@@ -1196,7 +1196,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
     }while(0)
 
     // Start with print or travel acceleration
-    accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
+    accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
 
     #if ENABLED(DISTINCT_E_FACTORS)
       #define ACCEL_IDX extruder
@@ -1267,8 +1267,8 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
         // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
         if (cos_theta > -0.95) {
           // Compute maximum junction velocity based on maximum acceleration and junction deviation
-          float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
-          NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
+          float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
+          NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
         }
       }
     }
@@ -1286,7 +1286,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
   float safe_speed = block->nominal_speed;
   uint8_t limited = 0;
   LOOP_XYZE(i) {
-    const float jerk = fabs(current_speed[i]), maxj = max_jerk[i];
+    const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
     if (jerk > maxj) {
       if (limited) {
         const float mjerk = maxj * block->nominal_speed;
@@ -1395,7 +1395,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
                             && (uint32_t)esteps != block->step_event_count
                             && de_float > 0.0;
     if (block->use_advance_lead)
-      block->abs_adv_steps_multiplier8 = lround(
+      block->abs_adv_steps_multiplier8 = LROUND(
         extruder_advance_k
         * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
         * (block->nominal_speed / (float)block->nominal_rate)
@@ -1458,10 +1458,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
   #else
     #define _EINDEX E_AXIS
   #endif
-  long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
-       nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
-       nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
-       ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]);
+  long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
+       nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
+       nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
+       ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
   #if ENABLED(LIN_ADVANCE)
     position_float[X_AXIS] = a;
     position_float[Y_AXIS] = b;
@@ -1514,7 +1514,7 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
   #else
     const uint8_t axis_index = axis;
   #endif
-  position[axis] = lround(v * axis_steps_per_mm[axis_index]);
+  position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
   #if ENABLED(LIN_ADVANCE)
     position_float[axis] = v;
   #endif
diff --git a/Marlin/planner.h b/Marlin/planner.h
index d389adc46d..90593816ee 100644
--- a/Marlin/planner.h
+++ b/Marlin/planner.h
@@ -454,7 +454,7 @@ class Planner {
      * 'distance'.
      */
     static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
-      return sqrt(sq(target_velocity) - 2 * accel * distance);
+      return SQRT(sq(target_velocity) - 2 * accel * distance);
     }
 
     static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
diff --git a/Marlin/planner_bezier.cpp b/Marlin/planner_bezier.cpp
index d7dd960900..71697e04ae 100644
--- a/Marlin/planner_bezier.cpp
+++ b/Marlin/planner_bezier.cpp
@@ -64,7 +64,7 @@ inline static float eval_bezier(float a, float b, float c, float d, float t) {
  * We approximate Euclidean distance with the sum of the coordinates
  * offset (so-called "norm 1"), which is quicker to compute.
  */
-inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(x1 - x2) + fabs(y1 - y2); }
+inline static float dist1(float x1, float y1, float x2, float y2) { return FABS(x1 - x2) + FABS(y1 - y2); }
 
 /**
  * The algorithm for computing the step is loosely based on the one in Kig
diff --git a/Marlin/qr_solve.cpp b/Marlin/qr_solve.cpp
index 20bbb62994..7706c6f8cf 100644
--- a/Marlin/qr_solve.cpp
+++ b/Marlin/qr_solve.cpp
@@ -521,7 +521,7 @@ float dnrm2(int n, float x[], int incx)
       }
       ix += incx;
     }
-    norm = scale * sqrt(ssq);
+    norm = scale * SQRT(ssq);
   }
   return norm;
 }
@@ -791,12 +791,12 @@ void dqrdc(float a[], int lda, int n, int p, float qraux[], int jpvt[],
           daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
           if (pl <= j && j <= pu) {
             if (qraux[j - 1] != 0.0) {
-              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
+              tt = 1.0 - POW(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
               tt = r8_max(tt, 0.0);
               t = tt;
-              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
+              tt = 1.0 + 0.05 * tt * POW(qraux[j - 1] / work[j - 1], 2);
               if (tt != 1.0)
-                qraux[j - 1] = qraux[j - 1] * sqrt(t);
+                qraux[j - 1] = qraux[j - 1] * SQRT(t);
               else {
                 qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
                 work[j - 1] = qraux[j - 1];
diff --git a/Marlin/serial.h b/Marlin/serial.h
index 08a4c08c6d..8be90c06a5 100644
--- a/Marlin/serial.h
+++ b/Marlin/serial.h
@@ -40,7 +40,7 @@
 extern const char echomagic[] PROGMEM;
 extern const char errormagic[] PROGMEM;
 
-#define SERIAL_CHAR(x) (MYSERIAL.write(x))
+#define SERIAL_CHAR(x) ((void)MYSERIAL.write(x))
 #define SERIAL_EOL() SERIAL_CHAR('\n')
 
 #define SERIAL_PROTOCOLCHAR(x)              SERIAL_CHAR(x)
diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp
index 5eb8f05b4a..99aec7f4da 100644
--- a/Marlin/temperature.cpp
+++ b/Marlin/temperature.cpp
@@ -749,7 +749,7 @@ void Temperature::manage_heater() {
 
     #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
       // Make sure measured temperatures are close together
-      if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
+      if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
         _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
     #endif
 
diff --git a/Marlin/ubl_G29.cpp b/Marlin/ubl_G29.cpp
index 8e047defb5..3fe2240d76 100644
--- a/Marlin/ubl_G29.cpp
+++ b/Marlin/ubl_G29.cpp
@@ -498,7 +498,7 @@
 
             if (parser.seen('B')) {
               g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
-              if (fabs(g29_card_thickness) > 1.5) {
+              if (FABS(g29_card_thickness) > 1.5) {
                 SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
                 return;
               }
@@ -562,7 +562,7 @@
                   // P3.13 1000X distance weighting, approaches simple average of nearest points
 
                   const float weight_power  = (cvf - 3.10) * 100.0,  // 3.12345 -> 2.345
-                              weight_factor = weight_power ? pow(10.0, weight_power) : 0;
+                              weight_factor = weight_power ? POW(10.0, weight_power) : 0;
                   smart_fill_wlsf(weight_factor);
                 }
                 break;
@@ -774,7 +774,7 @@
     SERIAL_ECHO_F(mean, 6);
     SERIAL_EOL();
 
-    const float sigma = sqrt(sum_of_diff_squared / (n + 1));
+    const float sigma = SQRT(sum_of_diff_squared / (n + 1));
     SERIAL_ECHOPGM("Standard Deviation: ");
     SERIAL_ECHO_F(sigma, 6);
     SERIAL_EOL();
@@ -1508,7 +1508,7 @@
         do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);    // Move the nozzle to where we are going to edit
         do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
 
-        new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
+        new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
 
         KEEPALIVE_STATE(PAUSED_FOR_USER);
         has_control_of_lcd_panel = true;
diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp
index d0d27b60ed..6d39f9570b 100644
--- a/Marlin/ubl_motion.cpp
+++ b/Marlin/ubl_motion.cpp
@@ -492,15 +492,15 @@
 
       #if ENABLED(DELTA)  // apply delta inverse_kinematics
 
-        const float delta_A = rz + sqrt( delta_diagonal_rod_2_tower[A_AXIS]
+        const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
                                          - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
                                                    delta_tower[A_AXIS][Y_AXIS] - ry ));
 
-        const float delta_B = rz + sqrt( delta_diagonal_rod_2_tower[B_AXIS]
+        const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
                                          - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
                                                    delta_tower[B_AXIS][Y_AXIS] - ry ));
 
-        const float delta_C = rz + sqrt( delta_diagonal_rod_2_tower[C_AXIS]
+        const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
                                          - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
                                                    delta_tower[C_AXIS][Y_AXIS] - ry ));
 
@@ -516,8 +516,8 @@
         inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
                                   // should move the feedrate scaling to scara inverse_kinematics
 
-        float adiff = abs(delta[A_AXIS] - scara_oldA),
-              bdiff = abs(delta[B_AXIS] - scara_oldB);
+        const float adiff = FABS(delta[A_AXIS] - scara_oldA),
+                    bdiff = FABS(delta[B_AXIS] - scara_oldB);
         scara_oldA = delta[A_AXIS];
         scara_oldB = delta[B_AXIS];
         float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index fe90b3734b..2749aafc11 100644
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -49,7 +49,7 @@
   bool ubl_lcd_map_control = false;
 #endif
 
-int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
+int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 
 #if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
   millis_t previous_lcd_status_ms = 0;
@@ -184,7 +184,7 @@ uint16_t max_display_update_time = 0;
     void menu_action_setting_edit_callback_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback, const bool live=false); \
     typedef void _name##_void
 
-  DECLARE_MENU_EDIT_TYPE(int, int3);
+  DECLARE_MENU_EDIT_TYPE(int16_t, int3);
   DECLARE_MENU_EDIT_TYPE(uint8_t, int8);
   DECLARE_MENU_EDIT_TYPE(float, float3);
   DECLARE_MENU_EDIT_TYPE(float, float32);
@@ -193,7 +193,7 @@ uint16_t max_display_update_time = 0;
   DECLARE_MENU_EDIT_TYPE(float, float51);
   DECLARE_MENU_EDIT_TYPE(float, float52);
   DECLARE_MENU_EDIT_TYPE(float, float62);
-  DECLARE_MENU_EDIT_TYPE(unsigned long, long5);
+  DECLARE_MENU_EDIT_TYPE(uint32_t, long5);
 
   void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
   void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc);
@@ -602,7 +602,7 @@ void lcd_status_screen() {
     }
 
     #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
-      const int new_frm = feedrate_percentage + (int32_t)encoderPosition;
+      const int16_t new_frm = feedrate_percentage + (int32_t)encoderPosition;
       // Dead zone at 100% feedrate
       if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
         feedrate_percentage = 100;
@@ -966,7 +966,7 @@ void kill_screen(const char* lcd_msg) {
       if (lcd_clicked) { defer_return_to_status = false; return lcd_goto_previous_menu(); }
       ENCODER_DIRECTION_NORMAL();
       if (encoderPosition) {
-        const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
+        const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
         encoderPosition = 0;
         lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
         thermalManager.babystep_axis(axis, babystep_increment);
@@ -990,7 +990,7 @@ void kill_screen(const char* lcd_msg) {
         defer_return_to_status = true;
         ENCODER_DIRECTION_NORMAL();
         if (encoderPosition) {
-          const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
+          const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
           encoderPosition = 0;
 
           const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
@@ -1021,7 +1021,7 @@ void kill_screen(const char* lcd_msg) {
 
     float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
                                                   // separate value that doesn't lose precision.
-    static int ubl_encoderPosition = 0;
+    static int16_t ubl_encoderPosition = 0;
 
     static void _lcd_mesh_fine_tune(const char* msg) {
       defer_return_to_status = true;
@@ -1275,7 +1275,7 @@ void kill_screen(const char* lcd_msg) {
    * "Prepare" submenu items
    *
    */
-  void _lcd_preheat(const int endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
+  void _lcd_preheat(const int16_t endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
     if (temph > 0) thermalManager.setTargetHotend(min(heater_maxtemp[endnum], temph), endnum);
     #if TEMP_SENSOR_BED != 0
       if (tempb >= 0) thermalManager.setTargetBed(tempb);
@@ -1806,7 +1806,7 @@ void kill_screen(const char* lcd_msg) {
 
     void _lcd_ubl_level_bed();
 
-    static int ubl_storage_slot = 0,
+    static int16_t ubl_storage_slot = 0,
                custom_bed_temp = 50,
                custom_hotend_temp = 190,
                side_points = 3,
@@ -2624,7 +2624,7 @@ void kill_screen(const char* lcd_msg) {
       // This assumes the center is 0,0
       #if ENABLED(DELTA)
         if (axis != Z_AXIS) {
-          max = sqrt(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
+          max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
           min = -max;
         }
       #endif
@@ -2872,14 +2872,14 @@ void kill_screen(const char* lcd_msg) {
   #if ENABLED(PID_AUTOTUNE_MENU)
 
     #if ENABLED(PIDTEMP)
-      int autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
+      int16_t autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
     #endif
 
     #if ENABLED(PIDTEMPBED)
-      int autotune_temp_bed = 70;
+      int16_t autotune_temp_bed = 70;
     #endif
 
-    void _lcd_autotune(int e) {
+    void _lcd_autotune(int16_t e) {
       char cmd[30];
       sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
         #if HAS_PID_FOR_BOTH
@@ -2899,14 +2899,14 @@ void kill_screen(const char* lcd_msg) {
 
     // Helpers for editing PID Ki & Kd values
     // grab the PID value out of the temp variable; scale it; then update the PID driver
-    void copy_and_scalePID_i(int e) {
+    void copy_and_scalePID_i(int16_t e) {
       #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
         UNUSED(e);
       #endif
       PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
       thermalManager.updatePID();
     }
-    void copy_and_scalePID_d(int e) {
+    void copy_and_scalePID_d(int16_t e) {
       #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
         UNUSED(e);
       #endif
@@ -3475,7 +3475,7 @@ void kill_screen(const char* lcd_msg) {
         STATIC_ITEM(MSG_INFO_PRINT_LONGEST ": ", false, false);                                        // Longest job time:
         STATIC_ITEM("", false, false, buffer);                                                         // 99y 364d 23h 59m 59s
 
-        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int(stats.filamentUsed / 100) % 10);
+        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
         STATIC_ITEM(MSG_INFO_PRINT_FILAMENT ": ", false, false);                                       // Extruded total:
         STATIC_ITEM("", false, false, buffer);                                                         // 125m
         END_SCREEN();
@@ -3878,14 +3878,14 @@ void kill_screen(const char* lcd_msg) {
    *
    * The "DEFINE_MENU_EDIT_TYPE" macro generates the functions needed to edit a numerical value.
    *
-   * For example, DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1) expands into these functions:
+   * For example, DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1) expands into these functions:
    *
    *   bool _menu_edit_int3();
-   *   void menu_edit_int3(); // edit int (interactively)
-   *   void menu_edit_callback_int3(); // edit int (interactively) with callback on completion
-   *   void _menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
-   *   void menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
-   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue, const screenFunc_t callback, const bool live); // edit int with callback
+   *   void menu_edit_int3(); // edit int16_t (interactively)
+   *   void menu_edit_callback_int3(); // edit int16_t (interactively) with callback on completion
+   *   void _menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
+   *   void menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
+   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue, const screenFunc_t callback, const bool live); // edit int16_t with callback
    *
    * You can then use one of the menu macros to present the edit interface:
    *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
@@ -3936,7 +3936,7 @@ void kill_screen(const char* lcd_msg) {
     } \
     typedef void _name
 
-  DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1);
+  DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1);
   DEFINE_MENU_EDIT_TYPE(uint8_t, int8, i8tostr3, 1);
   DEFINE_MENU_EDIT_TYPE(float, float3, ftostr3, 1.0);
   DEFINE_MENU_EDIT_TYPE(float, float32, ftostr32, 100.0);
@@ -3945,7 +3945,7 @@ void kill_screen(const char* lcd_msg) {
   DEFINE_MENU_EDIT_TYPE(float, float51, ftostr51sign, 10.0);
   DEFINE_MENU_EDIT_TYPE(float, float52, ftostr52sign, 100.0);
   DEFINE_MENU_EDIT_TYPE(float, float62, ftostr62rj, 100.0);
-  DEFINE_MENU_EDIT_TYPE(unsigned long, long5, ftostr5rj, 0.01);
+  DEFINE_MENU_EDIT_TYPE(uint32_t, long5, ftostr5rj, 0.01);
 
   /**
    *
@@ -3953,7 +3953,7 @@ void kill_screen(const char* lcd_msg) {
    *
    */
   #if ENABLED(REPRAPWORLD_KEYPAD)
-    void _reprapworld_keypad_move(AxisEnum axis, int dir) {
+    void _reprapworld_keypad_move(AxisEnum axis, int16_t dir) {
       move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
       encoderPosition = dir;
       switch (axis) {
@@ -4112,8 +4112,8 @@ void lcd_init() {
   #endif
 }
 
-int lcd_strlen(const char* s) {
-  int i = 0, j = 0;
+int16_t lcd_strlen(const char* s) {
+  int16_t i = 0, j = 0;
   while (s[i]) {
     if (PRINTABLE(s[i])) j++;
     i++;
@@ -4121,8 +4121,8 @@ int lcd_strlen(const char* s) {
   return j;
 }
 
-int lcd_strlen_P(const char* s) {
-  int j = 0;
+int16_t lcd_strlen_P(const char* s) {
+  int16_t j = 0;
   while (pgm_read_byte(s)) {
     if (PRINTABLE(pgm_read_byte(s))) j++;
     s++;
diff --git a/Marlin/ultralcd.h b/Marlin/ultralcd.h
index bda80cd48b..eb6d2e5bf5 100644
--- a/Marlin/ultralcd.h
+++ b/Marlin/ultralcd.h
@@ -30,10 +30,10 @@
   #define BUTTON_EXISTS(BN) (defined(BTN_## BN) && BTN_## BN >= 0)
   #define BUTTON_PRESSED(BN) !READ(BTN_## BN)
 
-  extern int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
+  extern int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 
-  int lcd_strlen(const char* s);
-  int lcd_strlen_P(const char* s);
+  int16_t lcd_strlen(const char* s);
+  int16_t lcd_strlen_P(const char* s);
   void lcd_update();
   void lcd_init();
   bool lcd_hasstatus();
diff --git a/Marlin/ultralcd_impl_DOGM.h b/Marlin/ultralcd_impl_DOGM.h
index 5ffe110201..a6c684a859 100644
--- a/Marlin/ultralcd_impl_DOGM.h
+++ b/Marlin/ultralcd_impl_DOGM.h
@@ -346,7 +346,7 @@ void lcd_implementation_clear() { } // Automatically cleared by Picture Loop
 // Status Screen
 //
 
-FORCE_INLINE void _draw_centered_temp(const int temp, const uint8_t x, const uint8_t y) {
+FORCE_INLINE void _draw_centered_temp(const int16_t temp, const uint8_t x, const uint8_t y) {
   const uint8_t degsize = 6 * (temp >= 100 ? 3 : temp >= 10 ? 2 : 1); // number's pixel width
   u8g.setPrintPos(x - (18 - degsize) / 2, y); // move left if shorter
   lcd_print(itostr3(temp));
@@ -484,7 +484,7 @@ static void lcd_implementation_status_screen() {
     #if HAS_FAN0
       if (PAGE_CONTAINS(20, 27)) {
         // Fan
-        const int per = ((fanSpeeds[0] + 1) * 100) / 256;
+        const int16_t per = ((fanSpeeds[0] + 1) * 100) / 256;
         if (per) {
           u8g.setPrintPos(104, 27);
           lcd_print(itostr3(per));
@@ -533,7 +533,7 @@ static void lcd_implementation_status_screen() {
       if (PAGE_CONTAINS(50, 51 - (TALL_FONT_CORRECTION)))     // 50-51 (or just 50)
         u8g.drawBox(
           PROGRESS_BAR_X + 1, 50,
-          (unsigned int)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
+          (uint16_t)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
         );
 
       //
@@ -847,7 +847,7 @@ static void lcd_implementation_status_screen() {
     } \
     typedef void _name##_void
 
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
@@ -856,7 +856,7 @@ static void lcd_implementation_status_screen() {
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
 
   #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
   #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
diff --git a/Marlin/ultralcd_impl_HD44780.h b/Marlin/ultralcd_impl_HD44780.h
index 65ad28165e..14fc95bca0 100644
--- a/Marlin/ultralcd_impl_HD44780.h
+++ b/Marlin/ultralcd_impl_HD44780.h
@@ -337,7 +337,7 @@ static void lcd_set_custom_characters(
       if (info_screen_charset != char_mode) {
         char_mode = info_screen_charset;
         if (info_screen_charset) { // Progress bar characters for info screen
-          for (int i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
+          for (int16_t i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
         }
         else { // Custom characters for submenus
           createChar_P(LCD_UPLEVEL_CHAR, uplevel);
@@ -414,17 +414,17 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
 
 #if ENABLED(SHOW_BOOTSCREEN)
 
-  void lcd_erase_line(const int line) {
+  void lcd_erase_line(const int16_t line) {
     lcd.setCursor(0, line);
     for (uint8_t i = LCD_WIDTH + 1; --i;)
       lcd.print(' ');
   }
 
   // Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line
-  void lcd_scroll(const int col, const int line, const char* const text, const int len, const int time) {
+  void lcd_scroll(const int16_t col, const int16_t line, const char* const text, const int16_t len, const int16_t time) {
     char tmp[LCD_WIDTH + 1] = {0};
-    int n = max(lcd_strlen_P(text) - len, 0);
-    for (int i = 0; i <= n; i++) {
+    int16_t n = max(lcd_strlen_P(text) - len, 0);
+    for (int16_t i = 0; i <= n; i++) {
       strncpy_P(tmp, text + i, min(len, LCD_WIDTH));
       lcd.setCursor(col, line);
       lcd_print(tmp);
@@ -433,7 +433,7 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
   }
 
   static void logo_lines(const char* const extra) {
-    int indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
+    int16_t indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
     lcd.setCursor(indent, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x01');
     lcd.setCursor(indent, 1);                    lcd_printPGM(PSTR("|Marlin|"));  lcd_printPGM(extra);
     lcd.setCursor(indent, 2); lcd.print('\x02'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x03');
@@ -628,7 +628,7 @@ FORCE_INLINE void _draw_heater_status(const int8_t heater, const char prefix, co
 #if ENABLED(LCD_PROGRESS_BAR)
 
   inline void lcd_draw_progress_bar(const uint8_t percent) {
-    const int tix = (int)(percent * (LCD_WIDTH) * 3) / 100,
+    const int16_t tix = (int16_t)(percent * (LCD_WIDTH) * 3) / 100,
               cel = tix / 3,
               rem = tix % 3;
     uint8_t i = LCD_WIDTH;
@@ -958,7 +958,7 @@ static void lcd_implementation_status_screen() {
     } \
     typedef void _name##_void
 
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
@@ -967,7 +967,7 @@ static void lcd_implementation_status_screen() {
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
   DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
-  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
+  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
 
   #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
   #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
diff --git a/Marlin/vector_3.cpp b/Marlin/vector_3.cpp
index 7d8efb7e96..f9615bcf08 100644
--- a/Marlin/vector_3.cpp
+++ b/Marlin/vector_3.cpp
@@ -63,7 +63,7 @@ vector_3 vector_3::get_normal() {
   return normalized;
 }
 
-float vector_3::get_length() { return sqrt(sq(x) + sq(y) + sq(z)); }
+float vector_3::get_length() { return SQRT(sq(x) + sq(y) + sq(z)); }
 
 void vector_3::normalize() {
   const float inv_length = 1.0 / get_length();