diff --git a/Marlin/Makefile b/Marlin/Makefile index e23c2a19b4..34ad1340da 100644 --- a/Marlin/Makefile +++ b/Marlin/Makefile @@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy endif CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \ MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \ - SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \ - stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \ + SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \ + temperature.cpp cardreader.cpp configuration_store.cpp \ watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \ vector_3.cpp qr_solve.cpp ifeq ($(LIQUID_TWI2), 0) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index c62ba9130f..af362457de 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -207,7 +207,6 @@ void disable_all_steppers(); void FlushSerialRequestResend(); void ok_to_send(); -void get_coordinates(); #ifdef DELTA void calculate_delta(float cartesian[3]); #ifdef ENABLE_AUTO_BED_LEVELING diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index ecdad9977f..803ea07cf2 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -47,7 +47,6 @@ #include "planner.h" #include "stepper.h" #include "temperature.h" -#include "motion_control.h" #include "cardreader.h" #include "watchdog.h" #include "configuration_store.h" @@ -226,7 +225,7 @@ bool Running = true; uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS; -static float feedrate = 1500.0, next_feedrate, saved_feedrate; +static float feedrate = 1500.0, saved_feedrate; float current_position[NUM_AXIS] = { 0.0 }; static float destination[NUM_AXIS] = { 0.0 }; bool axis_known_position[3] = { false }; @@ -258,7 +257,6 @@ const char errormagic[] PROGMEM = "Error:"; const char echomagic[] PROGMEM = "echo:"; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; -static float offset[3] = { 0 }; static bool relative_mode = false; //Determines Absolute or Relative Coordinates static char serial_char; static int serial_count = 0; @@ -401,7 +399,6 @@ bool target_direction; //================================ Functions ================================ //=========================================================================== -void get_arc_coordinates(); bool setTargetedHotend(int code); void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } @@ -1770,12 +1767,32 @@ static void homeaxis(AxisEnum axis) { * */ +/** + * Set XYZE destination and feedrate from the current GCode command + * + * - Set destination from included axis codes + * - Set to current for missing axis codes + * - Set the feedrate, if included + */ +void gcode_get_destination() { + for (int i = 0; i < NUM_AXIS; i++) { + if (code_seen(axis_codes[i])) + destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); + else + destination[i] = current_position[i]; + } + if (code_seen('F')) { + float next_feedrate = code_value(); + if (next_feedrate > 0.0) feedrate = next_feedrate; + } +} + /** * G0, G1: Coordinated movement of X Y Z E axes */ inline void gcode_G0_G1() { if (IsRunning()) { - get_coordinates(); // For X Y Z E F + gcode_get_destination(); // For X Y Z E F #ifdef FWRETRACT @@ -1797,14 +1814,158 @@ inline void gcode_G0_G1() { } } +/** + * Plan an arc in 2 dimensions + * + * The arc is approximated by generating many small linear segments. + * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) + * Arcs should only be made relatively large (over 5mm), as larger arcs with + * larger segments will tend to be more efficient. Your slicer should have + * options for G2/G3 arc generation. In future these options may be GCode tunable. + */ +void plan_arc( + float *target, // Destination position + float *offset, // Center of rotation relative to current_position + uint8_t clockwise // Clockwise? +) { + + float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), + center_axis0 = current_position[X_AXIS] + offset[X_AXIS], + center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], + linear_travel = target[Z_AXIS] - current_position[Z_AXIS], + extruder_travel = target[E_AXIS] - current_position[E_AXIS], + r_axis0 = -offset[X_AXIS], // Radius vector from center to current location + r_axis1 = -offset[Y_AXIS], + rt_axis0 = target[X_AXIS] - center_axis0, + rt_axis1 = target[Y_AXIS] - center_axis1; + + // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. + float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); + if (angular_travel < 0) { angular_travel += RADIANS(360); } + if (clockwise) { angular_travel -= RADIANS(360); } + + // Make a circle if the angular rotation is 0 + if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) + angular_travel += RADIANS(360); + + float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); + if (mm_of_travel < 0.001) { return; } + uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT); + if (segments == 0) segments = 1; + + float theta_per_segment = angular_travel/segments; + float linear_per_segment = linear_travel/segments; + float extruder_per_segment = extruder_travel/segments; + + /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, + and phi is the angle of rotation. Based on the solution approach by Jens Geisler. + r_T = [cos(phi) -sin(phi); + sin(phi) cos(phi] * r ; + + For arc generation, the center of the circle is the axis of rotation and the radius vector is + defined from the circle center to the initial position. Each line segment is formed by successive + vector rotations. This requires only two cos() and sin() computations to form the rotation + matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since + all double numbers are single precision on the Arduino. (True double precision will not have + round off issues for CNC applications.) Single precision error can accumulate to be greater than + tool precision in some cases. Therefore, arc path correction is implemented. + + Small angle approximation may be used to reduce computation overhead further. This approximation + holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, + theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large + to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for + numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an + issue for CNC machines with the single precision Arduino calculations. + + This approximation also allows plan_arc to immediately insert a line segment into the planner + without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied + a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. + This is important when there are successive arc motions. + */ + // Vector rotation matrix values + float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation + float sin_T = theta_per_segment; + + float arc_target[4]; + float sin_Ti; + float cos_Ti; + float r_axisi; + uint16_t i; + int8_t count = 0; + + // Initialize the linear axis + arc_target[Z_AXIS] = current_position[Z_AXIS]; + + // Initialize the extruder axis + arc_target[E_AXIS] = current_position[E_AXIS]; + + float feed_rate = feedrate*feedrate_multiplier/60/100.0; + + for (i = 1; i < segments; i++) { // Increment (segments-1) + + if (count < N_ARC_CORRECTION) { + // Apply vector rotation matrix to previous r_axis0 / 1 + r_axisi = r_axis0*sin_T + r_axis1*cos_T; + r_axis0 = r_axis0*cos_T - r_axis1*sin_T; + r_axis1 = r_axisi; + count++; + } + else { + // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. + // Compute exact location by applying transformation matrix from initial radius vector(=-offset). + cos_Ti = cos(i*theta_per_segment); + sin_Ti = sin(i*theta_per_segment); + r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti; + r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti; + count = 0; + } + + // Update arc_target location + arc_target[X_AXIS] = center_axis0 + r_axis0; + arc_target[Y_AXIS] = center_axis1 + r_axis1; + arc_target[Z_AXIS] += linear_per_segment; + arc_target[E_AXIS] += extruder_per_segment; + + clamp_to_software_endstops(arc_target); + plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); + } + // Ensure last segment arrives at target location. + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); + + // As far as the parser is concerned, the position is now == target. In reality the + // motion control system might still be processing the action and the real tool position + // in any intermediate location. + set_current_to_destination(); +} + /** * G2: Clockwise Arc * G3: Counterclockwise Arc */ inline void gcode_G2_G3(bool clockwise) { if (IsRunning()) { - get_arc_coordinates(); - prepare_arc_move(clockwise); + + #ifdef SF_ARC_FIX + bool relative_mode_backup = relative_mode; + relative_mode = true; + #endif + + gcode_get_destination(); + + #ifdef SF_ARC_FIX + relative_mode = relative_mode_backup; + #endif + + // Center of arc as offset from current_position + float arc_offset[2] = { + code_seen('I') ? code_value() : 0, + code_seen('J') ? code_value() : 0 + }; + + // Send an arc to the planner + plan_arc(destination, arc_offset, clockwise); + + refresh_cmd_timeout(); } } @@ -4308,7 +4469,7 @@ inline void gcode_M303() { //SoftEndsEnabled = false; // Ignore soft endstops during calibration //SERIAL_ECHOLN(" Soft endstops disabled "); if (IsRunning()) { - //get_coordinates(); // For X Y Z E F + //gcode_get_destination(); // For X Y Z E F delta[X_AXIS] = delta_x; delta[Y_AXIS] = delta_y; calculate_SCARA_forward_Transform(delta); @@ -4932,7 +5093,7 @@ inline void gcode_T() { make_move = true; #endif - next_feedrate = code_value(); + float next_feedrate = code_value(); if (next_feedrate > 0.0) feedrate = next_feedrate; } #if EXTRUDERS > 1 @@ -5562,33 +5723,6 @@ void ok_to_send() { SERIAL_EOL; } -void get_coordinates() { - for (int i = 0; i < NUM_AXIS; i++) { - if (code_seen(axis_codes[i])) - destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); - else - destination[i] = current_position[i]; - } - if (code_seen('F')) { - next_feedrate = code_value(); - if (next_feedrate > 0.0) feedrate = next_feedrate; - } -} - -void get_arc_coordinates() { - #ifdef SF_ARC_FIX - bool relative_mode_backup = relative_mode; - relative_mode = true; - #endif - get_coordinates(); - #ifdef SF_ARC_FIX - relative_mode = relative_mode_backup; - #endif - - offset[0] = code_seen('I') ? code_value() : 0; - offset[1] = code_seen('J') ? code_value() : 0; -} - void clamp_to_software_endstops(float target[3]) { if (min_software_endstops) { NOLESS(target[X_AXIS], min_pos[X_AXIS]); @@ -5912,19 +6046,6 @@ void prepare_move() { set_current_to_destination(); } -void prepare_arc_move(char isclockwise) { - float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc - - // Trace the arc - mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder); - - // As far as the parser is concerned, the position is now == target. In reality the - // motion control system might still be processing the action and the real tool position - // in any intermediate location. - set_current_to_destination(); - refresh_cmd_timeout(); -} - #if HAS_CONTROLLERFAN void controllerFan() { diff --git a/Marlin/motion_control.cpp b/Marlin/motion_control.cpp deleted file mode 100644 index b26cbafc8d..0000000000 --- a/Marlin/motion_control.cpp +++ /dev/null @@ -1,145 +0,0 @@ -/* - motion_control.c - high level interface for issuing motion commands - Part of Grbl - - Copyright (c) 2009-2011 Simen Svale Skogsrud - Copyright (c) 2011 Sungeun K. Jeon - - Grbl is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - Grbl is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with Grbl. If not, see <http://www.gnu.org/licenses/>. -*/ - -#include "Marlin.h" -#include "stepper.h" -#include "planner.h" - -// The arc is approximated by generating a huge number of tiny, linear segments. The length of each -// segment is configured in settings.mm_per_arc_segment. -void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, - uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) -{ - // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); - // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc - float center_axis0 = position[axis_0] + offset[axis_0]; - float center_axis1 = position[axis_1] + offset[axis_1]; - float linear_travel = target[axis_linear] - position[axis_linear]; - float extruder_travel = target[E_AXIS] - position[E_AXIS]; - float r_axis0 = -offset[axis_0]; // Radius vector from center to current location - float r_axis1 = -offset[axis_1]; - float rt_axis0 = target[axis_0] - center_axis0; - float rt_axis1 = target[axis_1] - center_axis1; - - // CCW angle between position and target from circle center. Only one atan2() trig computation required. - float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); - if (angular_travel < 0) { angular_travel += 2*M_PI; } - if (isclockwise) { angular_travel -= 2*M_PI; } - - //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving - //to compensate when start pos = target pos && angle is zero -> angle = 2Pi - if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0) - { - angular_travel += 2*M_PI; - } - //end fix G03 - - float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); - if (millimeters_of_travel < 0.001) { return; } - uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); - if(segments == 0) segments = 1; - - /* - // Multiply inverse feed_rate to compensate for the fact that this movement is approximated - // by a number of discrete segments. The inverse feed_rate should be correct for the sum of - // all segments. - if (invert_feed_rate) { feed_rate *= segments; } - */ - float theta_per_segment = angular_travel/segments; - float linear_per_segment = linear_travel/segments; - float extruder_per_segment = extruder_travel/segments; - - /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, - and phi is the angle of rotation. Based on the solution approach by Jens Geisler. - r_T = [cos(phi) -sin(phi); - sin(phi) cos(phi] * r ; - - For arc generation, the center of the circle is the axis of rotation and the radius vector is - defined from the circle center to the initial position. Each line segment is formed by successive - vector rotations. This requires only two cos() and sin() computations to form the rotation - matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since - all double numbers are single precision on the Arduino. (True double precision will not have - round off issues for CNC applications.) Single precision error can accumulate to be greater than - tool precision in some cases. Therefore, arc path correction is implemented. - - Small angle approximation may be used to reduce computation overhead further. This approximation - holds for everything, but very small circles and large mm_per_arc_segment values. In other words, - theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large - to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for - numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an - issue for CNC machines with the single precision Arduino calculations. - - This approximation also allows mc_arc to immediately insert a line segment into the planner - without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied - a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. - This is important when there are successive arc motions. - */ - // Vector rotation matrix values - float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation - float sin_T = theta_per_segment; - - float arc_target[4]; - float sin_Ti; - float cos_Ti; - float r_axisi; - uint16_t i; - int8_t count = 0; - - // Initialize the linear axis - arc_target[axis_linear] = position[axis_linear]; - - // Initialize the extruder axis - arc_target[E_AXIS] = position[E_AXIS]; - - for (i = 1; i<segments; i++) { // Increment (segments-1) - - if (count < N_ARC_CORRECTION) { - // Apply vector rotation matrix - r_axisi = r_axis0*sin_T + r_axis1*cos_T; - r_axis0 = r_axis0*cos_T - r_axis1*sin_T; - r_axis1 = r_axisi; - count++; - } else { - // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. - // Compute exact location by applying transformation matrix from initial radius vector(=-offset). - cos_Ti = cos(i*theta_per_segment); - sin_Ti = sin(i*theta_per_segment); - r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; - r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; - count = 0; - } - - // Update arc_target location - arc_target[axis_0] = center_axis0 + r_axis0; - arc_target[axis_1] = center_axis1 + r_axis1; - arc_target[axis_linear] += linear_per_segment; - arc_target[E_AXIS] += extruder_per_segment; - - clamp_to_software_endstops(arc_target); - plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); - - } - // Ensure last segment arrives at target location. - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); - - // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); -} - diff --git a/Marlin/motion_control.h b/Marlin/motion_control.h deleted file mode 100644 index ca50f8098f..0000000000 --- a/Marlin/motion_control.h +++ /dev/null @@ -1,32 +0,0 @@ -/* - motion_control.h - high level interface for issuing motion commands - Part of Grbl - - Copyright (c) 2009-2011 Simen Svale Skogsrud - Copyright (c) 2011 Sungeun K. Jeon - - Grbl is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - Grbl is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with Grbl. If not, see <http://www.gnu.org/licenses/>. -*/ - -#ifndef motion_control_h -#define motion_control_h - -// Execute an arc in offset mode format. position == current xyz, target == target xyz, -// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is -// the direction of helical travel, radius == circle radius, isclockwise boolean. Used -// for vector transformation direction. -void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, - unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder); - -#endif