Polargraph M665 settings (#24401)

This commit is contained in:
Arthur Masson 2022-07-16 23:58:18 +02:00 committed by GitHub
parent 504fec9823
commit 9706cd0d7d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 115 additions and 62 deletions

View file

@ -306,7 +306,7 @@ typedef struct {
LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1); LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
#endif #endif
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y)) if (position_is_reachable(s) && position_is_reachable(e))
print_line_from_here_to_there(s, e); print_line_from_here_to_there(s, e);
} }
} }

View file

@ -86,13 +86,13 @@
* *
* Parameters: * Parameters:
* *
* S[segments-per-second] - Segments-per-second * S[segments] - Segments-per-second
* *
* Without NO_WORKSPACE_OFFSETS: * Without NO_WORKSPACE_OFFSETS:
* *
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
* Z[z-offset] - Z offset, added to Z * Z[z-offset] - Z offset, added to Z
* *
* A, P, and X are all aliases for the shoulder angle * A, P, and X are all aliases for the shoulder angle
* B, T, and Y are all aliases for the elbow angle * B, T, and Y are all aliases for the elbow angle
@ -152,18 +152,35 @@
* *
* Parameters: * Parameters:
* *
* S[segments-per-second] - Segments-per-second * S[segments] - Segments-per-second
* L[left] - Work area minimum X
* R[right] - Work area maximum X
* T[top] - Work area maximum Y
* B[bottom] - Work area minimum Y
* H[length] - Maximum belt length
*/ */
void GcodeSuite::M665() { void GcodeSuite::M665() {
if (parser.seenval('S')) if (!parser.seen_any()) return M665_report();
segments_per_second = parser.value_float(); if (parser.seenval('S')) segments_per_second = parser.value_float();
else if (parser.seenval('L')) draw_area_min.x = parser.value_linear_units();
M665_report(); if (parser.seenval('R')) draw_area_max.x = parser.value_linear_units();
if (parser.seenval('T')) draw_area_max.y = parser.value_linear_units();
if (parser.seenval('B')) draw_area_min.y = parser.value_linear_units();
if (parser.seenval('H')) polargraph_max_belt_len = parser.value_linear_units();
draw_area_size.x = draw_area_max.x - draw_area_min.x;
draw_area_size.y = draw_area_max.y - draw_area_min.y;
} }
void GcodeSuite::M665_report(const bool forReplay/*=true*/) { void GcodeSuite::M665_report(const bool forReplay/*=true*/) {
report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS " (" STR_S_SEG_PER_SEC ")")); report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS));
SERIAL_ECHOLNPGM(" M665 S", segments_per_second); SERIAL_ECHOLNPGM_P(
PSTR(" M665 S"), LINEAR_UNIT(segments_per_second),
PSTR(" L"), LINEAR_UNIT(draw_area_min.x),
PSTR(" R"), LINEAR_UNIT(draw_area_max.x),
SP_T_STR, LINEAR_UNIT(draw_area_max.y),
SP_B_STR, LINEAR_UNIT(draw_area_min.y),
PSTR(" H"), LINEAR_UNIT(polargraph_max_belt_len)
);
} }
#endif #endif

View file

@ -933,7 +933,7 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
#endif #endif
#if IS_KINEMATIC #if IS_KINEMATIC
case 665: M665(); break; // M665: Set Delta/SCARA parameters case 665: M665(); break; // M665: Set Kinematics parameters
#endif #endif
#if ENABLED(DELTA) || HAS_EXTRA_ENDSTOPS #if ENABLED(DELTA) || HAS_EXTRA_ENDSTOPS

View file

@ -262,6 +262,7 @@
* M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE) * M605 - Set Dual X-Carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
* M665 - Set delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA) * M665 - Set delta configurations: "M665 H<delta height> L<diagonal rod> R<delta radius> S<segments/s> B<calibration radius> X<Alpha angle trim> Y<Beta angle trim> Z<Gamma angle trim> (Requires DELTA)
* Set SCARA configurations: "M665 S<segments-per-second> P<theta-psi-offset> T<theta-offset> Z<z-offset> (Requires MORGAN_SCARA or MP_SCARA) * Set SCARA configurations: "M665 S<segments-per-second> P<theta-psi-offset> T<theta-offset> Z<z-offset> (Requires MORGAN_SCARA or MP_SCARA)
* Set Polargraph draw area and belt length: "M665 S<segments-per-second> L<draw-area-left> R<draw-area-right> T<draw-area-top> B<draw-area-bottom> H<max-belt-length>"
* M666 - Set/get offsets for delta (Requires DELTA) or dual endstops. (Requires [XYZ]_DUAL_ENDSTOPS) * M666 - Set/get offsets for delta (Requires DELTA) or dual endstops. (Requires [XYZ]_DUAL_ENDSTOPS)
* M672 - Set/Reset Duet Smart Effector's sensitivity. (Requires DUET_SMART_EFFECTOR and SMART_EFFECTOR_MOD_PIN) * M672 - Set/Reset Duet Smart Effector's sensitivity. (Requires DUET_SMART_EFFECTOR and SMART_EFFECTOR_MOD_PIN)
* M701 - Load filament (Requires FILAMENT_LOAD_UNLOAD_GCODES) * M701 - Load filament (Requires FILAMENT_LOAD_UNLOAD_GCODES)

View file

@ -300,6 +300,73 @@ void report_current_position_projected() {
#endif #endif
#if IS_KINEMATIC
bool position_is_reachable(const_float_t rx, const_float_t ry, const float inset/*=0*/) {
bool can_reach;
#if ENABLED(DELTA)
can_reach = HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
#elif ENABLED(AXEL_TPARA)
const float R2 = HYPOT2(rx - TPARA_OFFSET_X, ry - TPARA_OFFSET_Y);
can_reach = (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
can_reach = (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#elif ENABLED(POLARGRAPH)
const float d1 = rx - (draw_area_min.x),
d2 = (draw_area_max.x) - rx,
y = ry - (draw_area_max.y),
a = HYPOT(d1, y),
b = HYPOT(d2, y);
can_reach = (
a < polargraph_max_belt_len + 1
&& b < polargraph_max_belt_len + 1
&& (a + b) > _MIN(draw_area_size.x, draw_area_size.y)
);
#endif
return can_reach;
}
#else // CARTESIAN
// Return true if the given position is within the machine bounds.
bool position_is_reachable(const_float_t rx, const_float_t ry) {
if (!COORDINATE_OKAY(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false;
#if ENABLED(DUAL_X_CARRIAGE)
if (active_extruder)
return COORDINATE_OKAY(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
else
return COORDINATE_OKAY(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
#else
return COORDINATE_OKAY(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
#endif
}
#endif // CARTESIAN
void home_if_needed(const bool keeplev/*=false*/) { void home_if_needed(const bool keeplev/*=false*/) {
if (!all_axes_trusted()) gcode.home_all_axes(keeplev); if (!all_axes_trusted()) gcode.home_all_axes(keeplev);
} }

View file

@ -549,63 +549,21 @@ void home_if_needed(const bool keeplev=false);
#endif #endif
// Return true if the given point is within the printable area // Return true if the given point is within the printable area
inline bool position_is_reachable(const_float_t rx, const_float_t ry, const float inset=0) { bool position_is_reachable(const_float_t rx, const_float_t ry, const float inset=0);
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset + fslop);
#elif ENABLED(POLARGRAPH)
const float x1 = rx - (X_MIN_POS), x2 = (X_MAX_POS) - rx, y = ry - (Y_MAX_POS),
a = HYPOT(x1, y), b = HYPOT(x2, y);
return a < (POLARGRAPH_MAX_BELT_LEN) + 1
&& b < (POLARGRAPH_MAX_BELT_LEN) + 1
&& (a + b) > _MIN(X_BED_SIZE, Y_BED_SIZE);
#elif ENABLED(AXEL_TPARA)
const float R2 = HYPOT2(rx - TPARA_OFFSET_X, ry - TPARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#endif
}
inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) { inline bool position_is_reachable(const xy_pos_t &pos, const float inset=0) {
return position_is_reachable(pos.x, pos.y, inset); return position_is_reachable(pos.x, pos.y, inset);
} }
#else // CARTESIAN #else
// Return true if the given position is within the machine bounds. // Return true if the given position is within the machine bounds.
inline bool position_is_reachable(const_float_t rx, const_float_t ry) { bool position_is_reachable(const_float_t rx, const_float_t ry);
if (!COORDINATE_OKAY(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop)) return false; inline bool position_is_reachable(const xy_pos_t &pos) {
#if ENABLED(DUAL_X_CARRIAGE) return position_is_reachable(pos.x, pos.y);
if (active_extruder)
return COORDINATE_OKAY(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop);
else
return COORDINATE_OKAY(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop);
#else
return COORDINATE_OKAY(rx, X_MIN_POS - fslop, X_MAX_POS + fslop);
#endif
} }
inline bool position_is_reachable(const xy_pos_t &pos) { return position_is_reachable(pos.x, pos.y); }
#endif // CARTESIAN #endif
/** /**
* Duplication mode * Duplication mode

View file

@ -39,8 +39,15 @@
float segments_per_second; // Initialized by settings.load() float segments_per_second; // Initialized by settings.load()
xy_pos_t draw_area_min = { X_MIN_POS, Y_MIN_POS },
draw_area_max = { X_MAX_POS, Y_MAX_POS };
xy_float_t draw_area_size = { X_MAX_POS - X_MIN_POS, Y_MAX_POS - Y_MIN_POS };
float polargraph_max_belt_len = HYPOT(draw_area_size.x, draw_area_size.y);
void inverse_kinematics(const xyz_pos_t &raw) { void inverse_kinematics(const xyz_pos_t &raw) {
const float x1 = raw.x - (X_MIN_POS), x2 = (X_MAX_POS) - raw.x, y = raw.y - (Y_MAX_POS); const float x1 = raw.x - (draw_area_min.x), x2 = (draw_area_max.x) - raw.x, y = raw.y - (draw_area_max.y);
delta.set(HYPOT(x1, y), HYPOT(x2, y), raw.z); delta.set(HYPOT(x1, y), HYPOT(x2, y), raw.z);
} }

View file

@ -29,5 +29,8 @@
#include "../core/macros.h" #include "../core/macros.h"
extern float segments_per_second; extern float segments_per_second;
extern xy_pos_t draw_area_min, draw_area_max;
extern xy_float_t draw_area_size;
extern float polargraph_max_belt_len;
void inverse_kinematics(const xyz_pos_t &raw); void inverse_kinematics(const xyz_pos_t &raw);