Planner class parity with 1.1.x
This commit is contained in:
parent
bee2b5eea4
commit
a52fec6ac4
|
@ -105,11 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
|
||||||
|
|
||||||
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
||||||
|
|
||||||
// Initialized by settings.load()
|
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
||||||
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
||||||
Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
|
|
||||||
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
|
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
|
||||||
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
|
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
||||||
|
|
||||||
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
|
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
|
||||||
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
|
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
|
||||||
|
@ -129,12 +128,11 @@ float Planner::min_feedrate_mm_s,
|
||||||
#if ABL_PLANAR
|
#if ABL_PLANAR
|
||||||
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||||
|
float Planner::z_fade_height, // Initialized by settings.load()
|
||||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
Planner::inverse_z_fade_height,
|
||||||
float Planner::z_fade_height, // Initialized by settings.load()
|
Planner::last_fade_z;
|
||||||
Planner::inverse_z_fade_height,
|
#endif
|
||||||
Planner::last_fade_z;
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(AUTOTEMP)
|
#if ENABLED(AUTOTEMP)
|
||||||
|
@ -571,7 +569,7 @@ void Planner::calculate_volumetric_multipliers() {
|
||||||
*/
|
*/
|
||||||
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
|
||||||
|
|
||||||
if (!planner.leveling_active) return;
|
if (!leveling_active) return;
|
||||||
|
|
||||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||||
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
|
||||||
|
@ -614,20 +612,22 @@ void Planner::calculate_volumetric_multipliers() {
|
||||||
|
|
||||||
void Planner::unapply_leveling(float raw[XYZ]) {
|
void Planner::unapply_leveling(float raw[XYZ]) {
|
||||||
|
|
||||||
if (!planner.leveling_active) return;
|
if (!leveling_active) return;
|
||||||
|
|
||||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||||
if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return;
|
if (!leveling_active_at_z(raw[Z_AXIS])) return;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]);
|
const float z_physical = raw[Z_AXIS],
|
||||||
float z_raw = raw[Z_AXIS] - z_correct;
|
z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]),
|
||||||
|
z_virtual = z_physical - z_correct;
|
||||||
|
float z_raw = z_virtual;
|
||||||
|
|
||||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||||
|
|
||||||
// for P=physical_z, L=raw_z, M=mesh_z, H=fade_height,
|
// for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
|
||||||
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
|
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
|
||||||
// then L=P-M(1-L/H)
|
// then L=P-M(1-L/H)
|
||||||
// so L=P-M+ML/H
|
// so L=P-M+ML/H
|
||||||
|
@ -637,7 +637,7 @@ void Planner::calculate_volumetric_multipliers() {
|
||||||
|
|
||||||
if (planner.z_fade_height) {
|
if (planner.z_fade_height) {
|
||||||
if (z_raw >= planner.z_fade_height)
|
if (z_raw >= planner.z_fade_height)
|
||||||
z_raw = raw[Z_AXIS];
|
z_raw = z_physical;
|
||||||
else
|
else
|
||||||
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
|
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
|
||||||
}
|
}
|
||||||
|
@ -646,28 +646,32 @@ void Planner::calculate_volumetric_multipliers() {
|
||||||
|
|
||||||
raw[Z_AXIS] = z_raw;
|
raw[Z_AXIS] = z_raw;
|
||||||
|
|
||||||
#elif ENABLED(MESH_BED_LEVELING)
|
return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic
|
||||||
|
|
||||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
#endif
|
||||||
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
|
|
||||||
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c);
|
#if ENABLED(MESH_BED_LEVELING)
|
||||||
#else
|
|
||||||
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
|
if (leveling_active) {
|
||||||
#endif
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||||
|
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
|
||||||
|
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
|
||||||
|
#else
|
||||||
|
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
#elif ABL_PLANAR
|
#elif ABL_PLANAR
|
||||||
|
|
||||||
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
||||||
|
|
||||||
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
|
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
|
||||||
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM),
|
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
|
||||||
dz = raw[Z_AXIS];
|
|
||||||
|
|
||||||
apply_rotation_xyz(inverse, dx, dy, dz);
|
apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
|
||||||
|
|
||||||
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
raw[X_AXIS] = dx + X_TILT_FULCRUM;
|
||||||
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
|
||||||
raw[Z_AXIS] = dz;
|
|
||||||
|
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||||
|
|
||||||
|
|
|
@ -144,7 +144,7 @@ class Planner {
|
||||||
static uint8_t last_extruder; // Respond to extruder change
|
static uint8_t last_extruder; // Respond to extruder change
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
||||||
|
|
||||||
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
||||||
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
||||||
|
@ -167,7 +167,7 @@ class Planner {
|
||||||
min_travel_feedrate_mm_s;
|
min_travel_feedrate_mm_s;
|
||||||
|
|
||||||
#if HAS_LEVELING
|
#if HAS_LEVELING
|
||||||
static bool leveling_active; // Flag that bed leveling is enabled
|
static bool leveling_active; // Flag that bed leveling is enabled
|
||||||
#if ABL_PLANAR
|
#if ABL_PLANAR
|
||||||
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
||||||
#endif
|
#endif
|
||||||
|
@ -342,12 +342,12 @@ class Planner {
|
||||||
/**
|
/**
|
||||||
* Planner::_buffer_line
|
* Planner::_buffer_line
|
||||||
*
|
*
|
||||||
* Add a new direct linear movement to the buffer.
|
* Add a new linear movement to the buffer in axis units.
|
||||||
*
|
*
|
||||||
* Leveling and kinematics should be applied ahead of this.
|
* Leveling and kinematics should be applied ahead of calling this.
|
||||||
*
|
*
|
||||||
* a,b,c,e - target position in mm or degrees
|
* a,b,c,e - target positions in mm and/or degrees
|
||||||
* fr_mm_s - (target) speed of the move (mm/s)
|
* fr_mm_s - (target) speed of the move
|
||||||
* extruder - target extruder
|
* extruder - target extruder
|
||||||
*/
|
*/
|
||||||
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
|
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
|
||||||
|
@ -444,7 +444,7 @@ class Planner {
|
||||||
if (blocks_queued()) {
|
if (blocks_queued()) {
|
||||||
block_t* block = &block_buffer[block_buffer_tail];
|
block_t* block = &block_buffer[block_buffer_tail];
|
||||||
#if ENABLED(ULTRA_LCD)
|
#if ENABLED(ULTRA_LCD)
|
||||||
block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it.
|
block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
|
||||||
#endif
|
#endif
|
||||||
SBI(block->flag, BLOCK_BIT_BUSY);
|
SBI(block->flag, BLOCK_BIT_BUSY);
|
||||||
return block;
|
return block;
|
||||||
|
|
Loading…
Reference in a new issue