Patch to fix kinematics

This commit is contained in:
Scott Lahteine 2016-09-12 03:48:29 -05:00
parent e529c6407e
commit d65f5d816f
2 changed files with 73 additions and 58 deletions

View file

@ -302,22 +302,24 @@ int code_value_int();
float code_value_temp_abs(); float code_value_temp_abs();
float code_value_temp_diff(); float code_value_temp_diff();
#if ENABLED(DELTA) #if IS_KINEMATIC
extern float delta[ABC]; extern float delta[ABC];
extern float endstop_adj[ABC]; // axis[n].endstop_adj
extern float delta_radius;
extern float delta_diagonal_rod;
extern float delta_segments_per_second;
extern float delta_diagonal_rod_trim_tower_1;
extern float delta_diagonal_rod_trim_tower_2;
extern float delta_diagonal_rod_trim_tower_3;
void inverse_kinematics(const float cartesian[XYZ]); void inverse_kinematics(const float cartesian[XYZ]);
#endif
#if ENABLED(DELTA)
extern float delta[ABC],
endstop_adj[ABC],
delta_radius,
delta_diagonal_rod,
delta_segments_per_second,
delta_diagonal_rod_trim_tower_1,
delta_diagonal_rod_trim_tower_2,
delta_diagonal_rod_trim_tower_3;
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#elif IS_SCARA #elif IS_SCARA
extern float delta[ABC];
extern float axis_scaling[ABC]; // Build size scaling extern float axis_scaling[ABC]; // Build size scaling
void inverse_kinematics(const float cartesian[XYZ]); void forward_kinematics_SCARA(const float &a, const float &b);
void forward_kinematics_SCARA(float f_scara[ABC]);
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)

View file

@ -465,7 +465,6 @@ static uint8_t target_extruder;
#define COS_60 0.5 #define COS_60 0.5
float delta[ABC], float delta[ABC],
cartes[XYZ] = { 0 },
endstop_adj[ABC] = { 0 }; endstop_adj[ABC] = { 0 };
// these are the default values, can be overriden with M665 // these are the default values, can be overriden with M665
@ -487,7 +486,6 @@ static uint8_t target_extruder;
delta_clip_start_height = Z_MAX_POS; delta_clip_start_height = Z_MAX_POS;
float delta_safe_distance_from_top(); float delta_safe_distance_from_top();
void get_cartesian_from_steppers();
#else #else
@ -508,11 +506,11 @@ static uint8_t target_extruder;
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND, float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
delta[ABC], delta[ABC],
axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1 axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
cartes[XYZ] = { 0 };
void get_cartesian_from_steppers() { } // to be written later
#endif #endif
float cartes[XYZ] = { 0 };
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404 float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
@ -598,6 +596,8 @@ void stop();
void get_available_commands(); void get_available_commands();
void process_next_command(); void process_next_command();
void prepare_move_to_destination(); void prepare_move_to_destination();
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(AxisEnum axis); void set_current_from_steppers_for_axis(AxisEnum axis);
#if ENABLED(ARC_SUPPORT) #if ENABLED(ARC_SUPPORT)
@ -1347,7 +1347,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
} }
#endif #endif
#if ENABLED(SCARA) #if ENABLED(MORGAN_SCARA)
if (axis == X_AXIS || axis == Y_AXIS) { if (axis == X_AXIS || axis == Y_AXIS) {
@ -1362,19 +1362,19 @@ static void set_axis_is_at_home(AxisEnum axis) {
* and calculates homing offset using forward kinematics * and calculates homing offset using forward kinematics
*/ */
inverse_kinematics(homeposition); inverse_kinematics(homeposition);
forward_kinematics_SCARA(delta); forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
// SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]); // SERIAL_ECHOPAIR("Delta X=", cartes[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(cartes[Y_AXIS]);
current_position[axis] = LOGICAL_POSITION(delta[axis], axis); current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
/** /**
* SCARA home positions are based on configuration since the actual * SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform. * limits are determined by the inverse kinematic transform.
*/ */
soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
} }
else else
#endif #endif
@ -5089,7 +5089,7 @@ static void report_current_position() {
stepper.report_positions(); stepper.report_positions();
#if ENABLED(SCARA) #if IS_SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOLPGM(" Psi+Theta:");
@ -5327,7 +5327,7 @@ inline void gcode_M206() {
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i)); set_home_offset((AxisEnum)i, code_value_axis_units(i));
#if ENABLED(SCARA) #if IS_SCARA
if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
#endif #endif
@ -5808,17 +5808,16 @@ inline void gcode_M303() {
#endif #endif
} }
#if ENABLED(SCARA) #if ENABLED(MORGAN_SCARA)
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) { bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLNPGM(" Soft endstops disabled"); //SERIAL_ECHOLNPGM(" Soft endstops disabled");
if (IsRunning()) { if (IsRunning()) {
//gcode_get_destination(); // For X Y Z E F //gcode_get_destination(); // For X Y Z E F
delta[X_AXIS] = delta_x; forward_kinematics_SCARA(delta_a, delta_b);
delta[Y_AXIS] = delta_y; destination[X_AXIS] = cartes[X_AXIS] / axis_scaling[X_AXIS];
forward_kinematics_SCARA(delta); destination[Y_AXIS] = cartes[Y_AXIS] / axis_scaling[Y_AXIS];
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; destination[Z_AXIS] = current_position[Z_AXIS];
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move_to_destination(); prepare_move_to_destination();
//ok_to_send(); //ok_to_send();
return true; return true;
@ -7456,7 +7455,7 @@ void process_next_command() {
gcode_M303(); gcode_M303();
break; break;
#if ENABLED(SCARA) #if ENABLED(MORGAN_SCARA)
case 360: // M360 SCARA Theta pos1 case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return; if (gcode_M360()) return;
break; break;
@ -7794,12 +7793,6 @@ void ok_to_send() {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
} }
void get_cartesian_from_steppers() {
forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS));
}
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
// Adjust print surface height by linear interpolation over the bed_level array. // Adjust print surface height by linear interpolation over the bed_level array.
@ -8274,32 +8267,32 @@ void prepare_move_to_destination() {
#endif // HAS_CONTROLLERFAN #endif // HAS_CONTROLLERFAN
#if ENABLED(SCARA) #if IS_SCARA
void forward_kinematics_SCARA(float f_scara[ABC]) { void forward_kinematics_SCARA(const float &a, const float &b) {
// Perform forward kinematics, and place results in delta[] // Perform forward kinematics, and place results in cartes[]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos; float a_sin, a_cos, b_sin, b_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]); //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(a);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]); //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(b);
x_sin = sin(RADIANS(f_scara[X_AXIS])) * L1; a_sin = sin(RADIANS(a)) * L1;
x_cos = cos(RADIANS(f_scara[X_AXIS])) * L1; a_cos = cos(RADIANS(a)) * L1;
y_sin = sin(RADIANS(f_scara[Y_AXIS])) * L2; b_sin = sin(RADIANS(b)) * L2;
y_cos = cos(RADIANS(f_scara[Y_AXIS])) * L2; b_cos = cos(RADIANS(b)) * L2;
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); //SERIAL_ECHOPGM(" a_sin="); SERIAL_ECHO(a_sin);
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); //SERIAL_ECHOPGM(" a_cos="); SERIAL_ECHO(a_cos);
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); //SERIAL_ECHOPGM(" b_sin="); SERIAL_ECHO(b_sin);
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); //SERIAL_ECHOPGM(" b_cos="); SERIAL_ECHOLN(b_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_OFFSET_X; //theta cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_OFFSET_Y; //theta+phi cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]); //SERIAL_ECHOPGM(" cartes[X_AXIS]="); SERIAL_ECHO(cartes[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM(" cartes[Y_AXIS]="); SERIAL_ECHOLN(cartes[Y_AXIS]);
} }
void inverse_kinematics(const float cartesian[XYZ]) { void inverse_kinematics(const float cartesian[XYZ]) {
@ -8343,7 +8336,27 @@ void prepare_move_to_destination() {
//*/ //*/
} }
#endif // MORGAN_SCARA #endif // IS_SCARA
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics_DELTA(
stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS)
);
#elif IS_SCARA
forward_kinematics_SCARA(
stepper.get_axis_position_degrees(A_AXIS),
stepper.get_axis_position_degrees(B_AXIS)
);
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#else
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#endif
}
#if ENABLED(TEMP_STAT_LEDS) #if ENABLED(TEMP_STAT_LEDS)