Marlin/Marlin/configuration_store.cpp
2017-03-22 20:51:10 -05:00

1496 lines
48 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* configuration_store.cpp
*
* Configuration and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
#define EEPROM_VERSION "V31"
// Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100
/**
* V31 EEPROM Layout:
*
* 100 Version (char x4)
* 104 EEPROM Checksum (uint16_t)
*
* 106 E_STEPPERS (uint8_t)
* 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x7)
* 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x7)
* 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x7)
* 155 M204 P planner.acceleration (float)
* 159 M204 R planner.retract_acceleration (float)
* 163 M204 T planner.travel_acceleration (float)
* 167 M205 S planner.min_feedrate_mm_s (float)
* 171 M205 T planner.min_travel_feedrate_mm_s (float)
* 175 M205 B planner.min_segment_time (ulong)
* 179 M205 X planner.max_jerk[X_AXIS] (float)
* 183 M205 Y planner.max_jerk[Y_AXIS] (float)
* 187 M205 Z planner.max_jerk[Z_AXIS] (float)
* 191 M205 E planner.max_jerk[E_AXIS] (float)
* 195 M206 XYZ home_offset (float x3)
* 207 M218 XYZ hotend_offset (float x3 per additional hotend)
*
* Mesh bed leveling:
* 219 M420 S from mbl.status (bool)
* 220 mbl.z_offset (float)
* 224 MESH_NUM_X_POINTS (uint8 as set in firmware)
* 225 MESH_NUM_Y_POINTS (uint8 as set in firmware)
* 226 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) +288
*
* AUTO BED LEVELING
* 262 M851 zprobe_zoffset (float)
*
* ABL_PLANAR (or placeholder): 36 bytes
* 266 planner.bed_level_matrix (matrix_3x3 = float x9)
*
* AUTO_BED_LEVELING_BILINEAR (or placeholder): 47 bytes
* 302 ABL_GRID_MAX_POINTS_X (uint8_t)
* 303 ABL_GRID_MAX_POINTS_Y (uint8_t)
* 304 bilinear_grid_spacing (int x2) from G29: (B-F)/X, (R-L)/Y
* 308 G29 L F bilinear_start (int x2)
* 312 bed_level_grid[][] (float x9, up to float x256) +988
*
* DELTA (if deltabot): 48 bytes
* 348 M666 XYZ endstop_adj (float x3)
* 360 M665 R delta_radius (float)
* 364 M665 L delta_diagonal_rod (float)
* 368 M665 S delta_segments_per_second (float)
* 372 M665 A delta_diagonal_rod_trim[A] (float)
* 376 M665 B delta_diagonal_rod_trim[B] (float)
* 380 M665 C delta_diagonal_rod_trim[C] (float)
* 384 M665 I delta_tower_angle_trim[A] (float)
* 388 M665 J delta_tower_angle_trim[B] (float)
* 392 M665 K delta_tower_angle_trim[C] (float)
*
* Z_DUAL_ENDSTOPS (if not deltabot): 48 bytes
* 348 M666 Z z_endstop_adj (float)
* --- dummy data (float x11)
*
* ULTIPANEL: 6 bytes
* 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
* 400 M145 S0 B lcd_preheat_bed_temp (int x2)
* 404 M145 S0 F lcd_preheat_fan_speed (int x2)
*
* PIDTEMP: 66 bytes
* 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 472 M301 L lpq_len (int)
*
* PIDTEMPBED: 12 bytes
* 474 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
*
* DOGLCD: 2 bytes
* 486 M250 C lcd_contrast (int)
*
* FWRETRACT: 29 bytes
* 488 M209 S autoretract_enabled (bool)
* 489 M207 S retract_length (float)
* 493 M207 W retract_length_swap (float)
* 497 M207 F retract_feedrate_mm_s (float)
* 501 M207 Z retract_zlift (float)
* 505 M208 S retract_recover_length (float)
* 509 M208 W retract_recover_length_swap (float)
* 513 M208 F retract_recover_feedrate_mm_s (float)
*
* Volumetric Extrusion: 17 bytes
* 517 M200 D volumetric_enabled (bool)
* 518 M200 T D filament_size (float x4) (T0..3)
*
* TMC2130 Stepper Current: 20 bytes
* 534 M906 X stepperX current (uint16_t)
* 536 M906 Y stepperY current (uint16_t)
* 538 M906 Z stepperZ current (uint16_t)
* 540 M906 X2 stepperX2 current (uint16_t)
* 542 M906 Y2 stepperY2 current (uint16_t)
* 544 M906 Z2 stepperZ2 current (uint16_t)
* 546 M906 E0 stepperE0 current (uint16_t)
* 548 M906 E1 stepperE1 current (uint16_t)
* 550 M906 E2 stepperE2 current (uint16_t)
* 552 M906 E3 stepperE3 current (uint16_t)
*
* 554 Minimum end-point
* 1875 (554 + 36 + 9 + 288 + 988) Maximum end-point
*
*/
#include "Marlin.h"
#include "language.h"
#include "endstops.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "configuration_store.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#if ENABLED(HAVE_TMC2130)
#include "stepper_indirection.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#endif
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
extern void bed_level_virt_interpolate();
#endif
/**
* Post-process after Retrieve or Reset
*/
void Config_Postprocess() {
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
calculate_volumetric_multipliers();
#if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
// Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
#endif
}
#if ENABLED(EEPROM_SETTINGS)
uint16_t eeprom_checksum;
const char version[4] = EEPROM_VERSION;
bool eeprom_write_error;
void _EEPROM_writeData(int &pos, const uint8_t* value, uint16_t size) {
if (eeprom_write_error) return;
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
const uint8_t v = *value;
// EEPROM has only ~100,000 write cycles,
// so only write bytes that have changed!
if (v != eeprom_read_byte(p)) {
eeprom_write_byte(p, v);
if (eeprom_read_byte(p) != v) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
eeprom_write_error = true;
return;
}
}
eeprom_checksum += v;
pos++;
value++;
};
}
bool eeprom_read_error;
void _EEPROM_readData(int &pos, uint8_t* value, uint16_t size) {
do {
uint8_t c = eeprom_read_byte((unsigned char*)pos);
if (!eeprom_read_error) *value = c;
eeprom_checksum += c;
pos++;
value++;
} while (--size);
}
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
#define EEPROM_ASSERT(TST,ERR) if () do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error |= true; }while(0)
/**
* M500 - Store Configuration
*/
bool Config_StoreSettings() {
float dummy = 0.0f;
char ver[4] = "000";
EEPROM_START();
eeprom_write_error = false;
EEPROM_WRITE(ver); // invalidate data first
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
eeprom_checksum = 0; // clear before first "real data"
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers);
EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE(planner.max_jerk);
#if ENABLED(NO_WORKSPACE_OFFSETS)
float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
#endif
//
// Mesh Bed Leveling
//
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
const uint8_t mesh_num_x = MESH_NUM_X_POINTS, mesh_num_y = MESH_NUM_Y_POINTS;
EEPROM_WRITE(leveling_is_on);
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else
// For disabled MBL write a default mesh
const bool leveling_is_on = false;
dummy = 0.0f;
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(leveling_is_on);
EEPROM_WRITE(dummy); // z_offset
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0.0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(bed_level_grid) is as expected
typedef char c_assert[(sizeof(bed_level_grid) == (ABL_GRID_MAX_POINTS_X) * (ABL_GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
const uint8_t grid_max_x = ABL_GRID_MAX_POINTS_X, grid_max_y = ABL_GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
EEPROM_WRITE(bilinear_start); // 2 ints
EEPROM_WRITE(bed_level_grid); // 9-256 floats
#else
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
dummy = 0.0f;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif // AUTO_BED_LEVELING_BILINEAR
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA)
EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f;
for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
#else
dummy = 0.0f;
for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
#endif
#if DISABLED(ULTIPANEL)
const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
#endif // !ULTIPANEL
EEPROM_WRITE(lcd_preheat_hotend_temp);
EEPROM_WRITE(lcd_preheat_bed_temp);
EEPROM_WRITE(lcd_preheat_fan_speed);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
} // Hotends Loop
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif
#if !HAS_LCD_CONTRAST
const int lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
EEPROM_WRITE(retract_feedrate_mm_s);
EEPROM_WRITE(retract_zlift);
EEPROM_WRITE(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_recover_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
EEPROM_WRITE(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_WRITE(volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_size)) dummy = filament_size[q];
EEPROM_WRITE(dummy);
}
// Save TCM2130 Configuration, and placeholder values
uint16_t val;
#if ENABLED(HAVE_TMC2130)
#if ENABLED(X_IS_TMC2130)
val = stepperX.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(Y_IS_TMC2130)
val = stepperY.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(Z_IS_TMC2130)
val = stepperZ.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(X2_IS_TMC2130)
val = stepperX2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(Y2_IS_TMC2130)
val = stepperY2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(Z2_IS_TMC2130)
val = stepperZ2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(E0_IS_TMC2130)
val = stepperE0.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(E1_IS_TMC2130)
val = stepperE1.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(E2_IS_TMC2130)
val = stepperE2.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#if ENABLED(E3_IS_TMC2130)
val = stepperE3.getCurrent();
#else
val = 0;
#endif
EEPROM_WRITE(val);
#else
val = 0;
for (uint8_t q = 0; q < 10; ++q) EEPROM_WRITE(val);
#endif
if (!eeprom_write_error) {
const uint16_t final_checksum = eeprom_checksum,
eeprom_size = eeprom_index;
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_checksum);
// Report storage size
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
SERIAL_ECHOLNPGM(" bytes)");
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.store_state();
if (ubl.state.eeprom_storage_slot >= 0)
ubl.store_mesh(ubl.state.eeprom_storage_slot);
#endif
return !eeprom_write_error;
}
/**
* M501 - Retrieve Configuration
*/
bool Config_RetrieveSettings() {
EEPROM_START();
eeprom_read_error = false; // If set EEPROM_READ won't write into RAM
char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_checksum;
EEPROM_READ(stored_checksum);
// Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[0] != 'V') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
SERIAL_ECHO_START;
SERIAL_ECHOPGM("EEPROM version mismatch ");
SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
Config_ResetDefault();
}
else {
float dummy = 0;
eeprom_checksum = 0; // clear before reading first "real data"
// Number of esteppers may change
uint8_t esteppers;
EEPROM_READ(esteppers);
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
uint32_t tmp3[XYZ + esteppers];
EEPROM_READ(tmp1);
EEPROM_READ(tmp2);
EEPROM_READ(tmp3);
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
}
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time);
EEPROM_READ(planner.max_jerk);
#if ENABLED(NO_WORKSPACE_OFFSETS)
float home_offset[XYZ];
#endif
EEPROM_READ(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
//
// Mesh (Manual) Bed Leveling
//
bool leveling_is_on;
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(leveling_is_on);
EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x);
EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
mbl.z_offset = dummy;
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_READ(zprobe_zoffset);
//
// Planar Bed Leveling matrix
//
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif
//
// Bilinear Auto Bed Leveling
//
uint8_t grid_max_x, grid_max_y;
EEPROM_READ(grid_max_x); // 1 byte
EEPROM_READ(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == ABL_GRID_MAX_POINTS_X && grid_max_y == ABL_GRID_MAX_POINTS_Y) {
set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(bed_level_grid); // 9 to 256 floats
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
//set_bed_leveling_enabled(leveling_is_on);
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2];
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
}
#if ENABLED(DELTA)
EEPROM_READ(endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj);
dummy = 0.0f;
for (uint8_t q=11; q--;) EEPROM_READ(dummy);
#else
dummy = 0.0f;
for (uint8_t q=12; q--;) EEPROM_READ(dummy);
#endif
#if DISABLED(ULTIPANEL)
int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
#endif
EEPROM_READ(lcd_preheat_hotend_temp);
EEPROM_READ(lcd_preheat_bed_temp);
EEPROM_READ(lcd_preheat_fan_speed);
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
#if !HAS_LCD_CONTRAST
int lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_READ(autoretract_enabled);
EEPROM_READ(retract_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_feedrate_mm_s);
EEPROM_READ(retract_zlift);
EEPROM_READ(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_recover_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_READ(volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (q < COUNT(filament_size)) filament_size[q] = dummy;
}
uint16_t val;
#if ENABLED(HAVE_TMC2130)
EEPROM_READ(val);
#if ENABLED(X_IS_TMC2130)
stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(Y_IS_TMC2130)
stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(Z_IS_TMC2130)
stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(X2_IS_TMC2130)
stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(Y2_IS_TMC2130)
stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(E0_IS_TMC2130)
stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(E1_IS_TMC2130)
stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(E2_IS_TMC2130)
stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
EEPROM_READ(val);
#if ENABLED(E3_IS_TMC2130)
stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
#endif
#else
for (uint8_t q = 0; q < 10; q++) EEPROM_READ(val);
#endif
if (eeprom_checksum == stored_checksum) {
if (eeprom_read_error)
Config_ResetDefault();
else {
Config_Postprocess();
SERIAL_ECHO_START;
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOLNPGM(" bytes)");
}
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
Config_ResetDefault();
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without
// disrupting the Unified Bed Leveling data
ubl.load_state();
SERIAL_ECHOPGM(" UBL ");
if (!ubl.state.active) SERIAL_ECHO("not ");
SERIAL_ECHOLNPGM("active!");
if (!ubl.sanity_check()) {
int tmp_mesh; // We want to preserve whether the UBL System is Active
bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
tmp_mesh = ubl.state.eeprom_storage_slot;
tmp_active = ubl.state.active;
SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
ubl.state.active = tmp_active;
}
else {
SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
ubl.state = ubl.pre_initialized;
ubl.reset();
ubl.store_state();
}
if (ubl.state.eeprom_storage_slot >= 0) {
ubl.load_mesh(ubl.state.eeprom_storage_slot);
SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
SERIAL_ECHOLNPGM(" loaded from storage.");
}
else {
ubl.reset();
SERIAL_ECHOPGM("UBL System reset() \n");
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT)
Config_PrintSettings();
#endif
return !eeprom_read_error;
}
#else // !EEPROM_SETTINGS
bool Config_StoreSettings() {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("EEPROM disabled");
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void Config_ResetDefault() {
const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
}
planner.acceleration = DEFAULT_ACCELERATION;
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if DISABLED(NO_WORKSPACE_OFFSETS)
ZERO(home_offset);
#endif
#if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#else
, { 0 }
#endif
};
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#endif
// Applies to all MBL and ABL
#if PLANNER_LEVELING
reset_bed_level();
#endif
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 },
dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 };
COPY(endstop_adj, adj);
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
COPY(delta_diagonal_rod_trim, drt);
COPY(delta_tower_angle_trim, dta);
#elif ENABLED(Z_DUAL_ENDSTOPS)
z_endstop_adj = 0;
#endif
#if ENABLED(ULTIPANEL)
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
HOTEND_LOOP()
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
thermalManager.bedKp = DEFAULT_bedKp;
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
#endif
#if ENABLED(FWRETRACT)
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate_mm_s = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
#else
false
#endif
;
for (uint8_t q = 0; q < COUNT(filament_size); q++)
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
(true)
#else
(false)
#endif
);
#if ENABLED(HAVE_TMC2130)
#if ENABLED(X_IS_TMC2130)
stepperX.setCurrent(X_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(Y_IS_TMC2130)
stepperY.setCurrent(Y_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(Z_IS_TMC2130)
stepperZ.setCurrent(Z_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(X2_IS_TMC2130)
stepperX2.setCurrent(X2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(Y2_IS_TMC2130)
stepperY2.setCurrent(Y2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(Z2_IS_TMC2130)
stepperZ2.setCurrent(Z2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(E0_IS_TMC2130)
stepperE0.setCurrent(E0_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(E1_IS_TMC2130)
stepperE1.setCurrent(E1_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(E2_IS_TMC2130)
stepperE2.setCurrent(E2_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#if ENABLED(E3_IS_TMC2130)
stepperE3.setCurrent(E3_MAX_CURRENT, R_SENSE, HOLD_MULTIPLIER);
#endif
#endif
Config_Postprocess();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
#if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
/**
* M503 - Print Configuration
*/
void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
#endif
SERIAL_EOL;
#if ENABLED(DISTINCT_E_FACTORS)
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M92 T", (int)i);
SERIAL_ECHOLNPAIR(" E", planner.axis_steps_per_mm[E_AXIS + i]);
}
#endif
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
#endif
SERIAL_EOL;
#if ENABLED(DISTINCT_E_FACTORS)
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M203 T", (int)i);
SERIAL_ECHOLNPAIR(" E", planner.max_feedrate_mm_s[E_AXIS + i]);
}
#endif
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
#endif
SERIAL_EOL;
#if ENABLED(DISTINCT_E_FACTORS)
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR(" M201 T", (int)i);
SERIAL_ECHOLNPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS + i]);
}
#endif
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL;
#if DISABLED(NO_WORKSPACE_OFFSETS)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOLNPGM("Unified Bed Leveling:");
CONFIG_ECHO_START;
SERIAL_ECHOPGM("System is: ");
if (ubl.state.active)
SERIAL_ECHOLNPGM("Active\n");
else
SERIAL_ECHOLNPGM("Deactive\n");
SERIAL_ECHOPAIR("Active Mesh Slot: ", ubl.state.eeprom_storage_slot);
SERIAL_EOL;
SERIAL_ECHOPGM("z_offset: ");
SERIAL_ECHO_F(ubl.state.z_offset, 6);
SERIAL_EOL;
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(ubl.state) - ubl_eeprom_start) / sizeof(z_values)));
SERIAL_ECHOLNPGM(" meshes. \n");
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
SERIAL_ECHOPGM("\nMESH_X_DIST ");
SERIAL_ECHO_F(MESH_X_DIST, 6);
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
SERIAL_ECHO_F(MESH_Y_DIST, 6);
SERIAL_EOL;
SERIAL_EOL;
#endif
#if HOTENDS > 1
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Hotend offsets (mm)");
CONFIG_ECHO_START;
}
for (uint8_t e = 1; e < HOTENDS; e++) {
SERIAL_ECHOPAIR(" M218 T", (int)e);
SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS][e]);
SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS][e]);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS][e]);
#endif
SERIAL_EOL;
}
#endif
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
CONFIG_ECHO_START;
}
SERIAL_ECHOLNPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
SERIAL_ECHOPAIR(" Y", (int)py);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
SERIAL_EOL;
}
}
#elif HAS_ABL
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto Bed Leveling:");
CONFIG_ECHO_START;
}
SERIAL_ECHOLNPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
#endif
#if ENABLED(DELTA)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim[A_AXIS]);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim[B_AXIS]);
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim[C_AXIS]);
SERIAL_ECHOPAIR(" I", delta_tower_angle_trim[A_AXIS]);
SERIAL_ECHOPAIR(" J", delta_tower_angle_trim[B_AXIS]);
SERIAL_ECHOPAIR(" K", delta_tower_angle_trim[C_AXIS]);
SERIAL_EOL;
#elif ENABLED(Z_DUAL_ENDSTOPS)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
SERIAL_EOL;
#endif // DELTA
#if ENABLED(ULTIPANEL)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Material heatup parameters:");
CONFIG_ECHO_START;
}
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
SERIAL_ECHOPAIR(" M145 S", (int)i);
SERIAL_ECHOPAIR(" H", lcd_preheat_hotend_temp[i]);
SERIAL_ECHOPAIR(" B", lcd_preheat_bed_temp[i]);
SERIAL_ECHOPAIR(" F", lcd_preheat_fan_speed[i]);
SERIAL_EOL;
}
#endif // ULTIPANEL
#if HAS_PID_HEATING
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL;
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("LCD Contrast:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
SERIAL_EOL;
#endif
#if ENABLED(FWRETRACT)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
SERIAL_EOL;
#endif // FWRETRACT
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (volumetric_enabled)
SERIAL_EOL;
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
if (!volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
/**
* Auto Bed Leveling
*/
#if HAS_BED_PROBE
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
SERIAL_EOL;
#endif
/**
* TMC2130 stepper driver current
*/
#if ENABLED(HAVE_TMC2130)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Stepper driver current:");
CONFIG_ECHO_START;
}
SERIAL_ECHO(" M906");
#if ENABLED(X_IS_TMC2130)
SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
#endif
#if ENABLED(Y_IS_TMC2130)
SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
#endif
#if ENABLED(Z_IS_TMC2130)
SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
#endif
#if ENABLED(X2_IS_TMC2130)
SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
#endif
#if ENABLED(Y2_IS_TMC2130)
SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
#endif
#if ENABLED(Z2_IS_TMC2130)
SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
#endif
#if ENABLED(E0_IS_TMC2130)
SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
#endif
#if ENABLED(E1_IS_TMC2130)
SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
#endif
#if ENABLED(E2_IS_TMC2130)
SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
#endif
#if ENABLED(E3_IS_TMC2130)
SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
#endif
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503