Merge branch 'Development' into planner_oh_planner

Latest upstream commits
This commit is contained in:
Scott Lahteine 2015-03-22 23:40:29 -07:00
commit 34a41648ab
15 changed files with 99 additions and 188 deletions

View file

@ -417,12 +417,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -18,7 +18,7 @@
* max_xy_jerk * max_xy_jerk
* max_z_jerk * max_z_jerk
* max_e_jerk * max_e_jerk
* add_homing (x3) * home_offset (x3)
* *
* Mesh bed leveling: * Mesh bed leveling:
* active * active
@ -136,7 +136,7 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, max_xy_jerk); EEPROM_WRITE_VAR(i, max_xy_jerk);
EEPROM_WRITE_VAR(i, max_z_jerk); EEPROM_WRITE_VAR(i, max_z_jerk);
EEPROM_WRITE_VAR(i, max_e_jerk); EEPROM_WRITE_VAR(i, max_e_jerk);
EEPROM_WRITE_VAR(i, add_homing); EEPROM_WRITE_VAR(i, home_offset);
uint8_t mesh_num_x = 3; uint8_t mesh_num_x = 3;
uint8_t mesh_num_y = 3; uint8_t mesh_num_y = 3;
@ -294,7 +294,7 @@ void Config_RetrieveSettings() {
EEPROM_READ_VAR(i, max_xy_jerk); EEPROM_READ_VAR(i, max_xy_jerk);
EEPROM_READ_VAR(i, max_z_jerk); EEPROM_READ_VAR(i, max_z_jerk);
EEPROM_READ_VAR(i, max_e_jerk); EEPROM_READ_VAR(i, max_e_jerk);
EEPROM_READ_VAR(i, add_homing); EEPROM_READ_VAR(i, home_offset);
uint8_t mesh_num_x = 0; uint8_t mesh_num_x = 0;
uint8_t mesh_num_y = 0; uint8_t mesh_num_y = 0;
@ -447,7 +447,7 @@ void Config_ResetDefault() {
max_xy_jerk = DEFAULT_XYJERK; max_xy_jerk = DEFAULT_XYJERK;
max_z_jerk = DEFAULT_ZJERK; max_z_jerk = DEFAULT_ZJERK;
max_e_jerk = DEFAULT_EJERK; max_e_jerk = DEFAULT_EJERK;
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0; home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
#if defined(MESH_BED_LEVELING) #if defined(MESH_BED_LEVELING)
mbl.active = 0; mbl.active = 0;
@ -607,9 +607,9 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHOLNPGM("Home offset (mm):");
SERIAL_ECHO_START; SERIAL_ECHO_START;
} }
SERIAL_ECHOPAIR(" M206 X", add_homing[X_AXIS] ); SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS] );
SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] ); SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] ); SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS] );
SERIAL_EOL; SERIAL_EOL;
#ifdef DELTA #ifdef DELTA

View file

@ -240,7 +240,7 @@ extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in per
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS] ; extern float current_position[NUM_AXIS] ;
extern float add_homing[3]; extern float home_offset[3];
#ifdef DELTA #ifdef DELTA
extern float endstop_adj[3]; extern float endstop_adj[3];
extern float delta_radius; extern float delta_radius;

View file

@ -248,7 +248,7 @@ float volumetric_multiplier[EXTRUDERS] = {1.0
#endif #endif
}; };
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 }; float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homing[3] = { 0, 0, 0 }; float home_offset[3] = { 0, 0, 0 };
#ifdef DELTA #ifdef DELTA
float endstop_adj[3] = { 0, 0, 0 }; float endstop_adj[3] = { 0, 0, 0 };
#endif #endif
@ -984,7 +984,7 @@ static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return base_home_pos(X_AXIS) + add_homing[X_AXIS]; return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else else
// In dual carriage mode the extruder offset provides an override of the // In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@ -1016,9 +1016,9 @@ static void axis_is_at_home(int axis) {
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS]; min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS], max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
@ -1046,11 +1046,11 @@ static void axis_is_at_home(int axis) {
for (i=0; i<2; i++) for (i=0; i<2; i++)
{ {
delta[i] -= add_homing[i]; delta[i] -= home_offset[i];
} }
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]); // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
@ -1068,14 +1068,14 @@ static void axis_is_at_home(int axis) {
} }
else else
{ {
current_position[axis] = base_home_pos(axis) + add_homing[axis]; current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + add_homing[axis]; min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + add_homing[axis]; max_pos[axis] = base_max_pos(axis) + home_offset[axis];
} }
#else #else
current_position[axis] = base_home_pos(axis) + add_homing[axis]; current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + add_homing[axis]; min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + add_homing[axis]; max_pos[axis] = base_max_pos(axis) + home_offset[axis];
#endif #endif
} }
@ -1309,7 +1309,13 @@ static void engage_z_probe() {
static void retract_z_probe() { static void retract_z_probe() {
// Retract Z Servo endstop if enabled // Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) { if (servo_endstops[Z_AXIS] > -1)
{
#if Z_RAISE_AFTER_PROBING > 0
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
st_synchronize();
#endif
#if SERVO_LEVELING #if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0); servos[servo_endstops[Z_AXIS]].attach(0);
#endif #endif
@ -1322,7 +1328,7 @@ static void retract_z_probe() {
#elif defined(Z_PROBE_ALLEN_KEY) #elif defined(Z_PROBE_ALLEN_KEY)
// Move up for safety // Move up for safety
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS] + 20; destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw(); prepare_move_raw();
// Move to the start position to initiate retraction // Move to the start position to initiate retraction
@ -1364,10 +1370,15 @@ static void retract_z_probe() {
} }
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract }; enum ProbeAction {
ProbeStay = 0,
ProbeEngage = BIT(0),
ProbeRetract = BIT(1),
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
};
/// Probe bed height at position (x,y), returns the measured z value /// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) { static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
// move to right place // move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
@ -1858,7 +1869,7 @@ inline void gcode_G28() {
if (code_value_long() != 0) { if (code_value_long() != 0) {
current_position[X_AXIS] = code_value() current_position[X_AXIS] = code_value()
#ifndef SCARA #ifndef SCARA
+ add_homing[X_AXIS] + home_offset[X_AXIS]
#endif #endif
; ;
} }
@ -1867,7 +1878,7 @@ inline void gcode_G28() {
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) { if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
current_position[Y_AXIS] = code_value() current_position[Y_AXIS] = code_value()
#ifndef SCARA #ifndef SCARA
+ add_homing[Y_AXIS] + home_offset[Y_AXIS]
#endif #endif
; ;
} }
@ -1941,7 +1952,7 @@ inline void gcode_G28() {
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0) if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS]; current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
@ -2166,7 +2177,7 @@ inline void gcode_G28() {
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA #ifndef DELTA
bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t'); bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
#endif #endif
if (verbose_level > 0) if (verbose_level > 0)
@ -2221,7 +2232,7 @@ inline void gcode_G28() {
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
dock_sled(false); // engage (un-dock) the probe dock_sled(false); // engage (un-dock) the probe
#elif not defined(SERVO_ENDSTOPS) #elif defined(Z_PROBE_ALLEN_KEY)
engage_z_probe(); engage_z_probe();
#endif #endif
@ -2271,28 +2282,23 @@ inline void gcode_G28() {
delta_grid_spacing[1] = yGridSpacing; delta_grid_spacing[1] = yGridSpacing;
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER; float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
if (code_seen(axis_codes[Z_AXIS])) { if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
z_offset += code_value();
}
#endif #endif
int probePointCounter = 0; int probePointCounter = 0;
bool zig = true; bool zig = true;
for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++) for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
{
double yProbe = front_probe_bed_position + yGridSpacing * yCount; double yProbe = front_probe_bed_position + yGridSpacing * yCount;
int xStart, xStop, xInc; int xStart, xStop, xInc;
if (zig) if (zig) {
{
xStart = 0; xStart = 0;
xStop = auto_bed_leveling_grid_points; xStop = auto_bed_leveling_grid_points;
xInc = 1; xInc = 1;
zig = false; zig = false;
} }
else else {
{
xStart = auto_bed_leveling_grid_points - 1; xStart = auto_bed_leveling_grid_points - 1;
xStop = -1; xStop = -1;
xInc = -1; xInc = -1;
@ -2300,13 +2306,12 @@ inline void gcode_G28() {
} }
#ifndef DELTA #ifndef DELTA
// If topo_flag is set then don't zig-zag. Just scan in one direction. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
// This gets the probe points in more readable order. // This gets the probe points in more readable order.
if (!topo_flag) zig = !zig; if (!do_topography_map) zig = !zig;
#endif #endif
for (int xCount=xStart; xCount != xStop; xCount += xInc) for (int xCount = xStart; xCount != xStop; xCount += xInc) {
{
double xProbe = left_probe_bed_position + xGridSpacing * xCount; double xProbe = left_probe_bed_position + xGridSpacing * xCount;
// raise extruder // raise extruder
@ -2331,7 +2336,7 @@ inline void gcode_G28() {
act = ProbeStay; act = ProbeStay;
} }
else else
act = ProbeEngageRetract; act = ProbeEngageAndRetract;
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level); measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
@ -2373,37 +2378,19 @@ inline void gcode_G28() {
} }
} }
if (topo_flag) { // Show the Topography map if enabled
if (do_topography_map) {
int xx, yy;
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n"); SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
#if TOPO_ORIGIN == OriginFrontLeft
SERIAL_PROTOCOLPGM("+-----------+\n"); SERIAL_PROTOCOLPGM("+-----------+\n");
SERIAL_PROTOCOLPGM("|...Back....|\n"); SERIAL_PROTOCOLPGM("|...Back....|\n");
SERIAL_PROTOCOLPGM("|Left..Right|\n"); SERIAL_PROTOCOLPGM("|Left..Right|\n");
SERIAL_PROTOCOLPGM("|...Front...|\n"); SERIAL_PROTOCOLPGM("|...Front...|\n");
SERIAL_PROTOCOLPGM("+-----------+\n"); SERIAL_PROTOCOLPGM("+-----------+\n");
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++) for (int xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--) {
#endif int ind = yy * auto_bed_leveling_grid_points + xx;
{
#if TOPO_ORIGIN == OriginBackRight
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#else
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#endif
{
int ind =
#if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
yy * auto_bed_leveling_grid_points + xx
#elif TOPO_ORIGIN == OriginBackLeft
xx * auto_bed_leveling_grid_points + yy
#elif TOPO_ORIGIN == OriginFrontRight
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
#endif
;
float diff = eqnBVector[ind] - mean; float diff = eqnBVector[ind] - mean;
if (diff >= 0.0) if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
@ -2415,7 +2402,7 @@ inline void gcode_G28() {
} // yy } // yy
SERIAL_EOL; SERIAL_EOL;
} //topo_flag } //do_topography_map
set_bed_level_equation_lsq(plane_equation_coefficients); set_bed_level_equation_lsq(plane_equation_coefficients);
@ -2437,18 +2424,15 @@ inline void gcode_G28() {
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
} }
else { else {
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level); z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level); z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
} }
clean_up_after_endstop_move(); clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID #endif // !AUTO_BED_LEVELING_GRID
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
st_synchronize();
#ifndef DELTA #ifndef DELTA
if (verbose_level > 0) if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
@ -2468,7 +2452,7 @@ inline void gcode_G28() {
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#elif not defined(SERVO_ENDSTOPS) #elif defined(Z_PROBE_ALLEN_KEY)
retract_z_probe(); retract_z_probe();
#endif #endif
@ -2515,23 +2499,14 @@ inline void gcode_G92() {
for (int i = 0; i < NUM_AXIS; i++) { for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
current_position[i] = code_value(); current_position[i] = code_value();
if (i == E_AXIS)
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
} else
else {
current_position[i] = code_value() +
#ifdef SCARA
((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
#else
add_homing[i]
#endif
;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
} }
} }
}
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -3465,9 +3440,9 @@ inline void gcode_M114() {
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]); SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]); SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
@ -3685,12 +3660,12 @@ inline void gcode_M205() {
inline void gcode_M206() { inline void gcode_M206() {
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) { for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
add_homing[i] = code_value(); home_offset[i] = code_value();
} }
} }
#ifdef SCARA #ifdef SCARA
if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
#endif #endif
} }
@ -5288,7 +5263,7 @@ void clamp_to_software_endstops(float target[3])
float negative_z_offset = 0; float negative_z_offset = 0;
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER; if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS]; if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
#endif #endif
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset; if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;

View file

@ -457,12 +457,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -403,12 +403,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Note: this feature occupies 10'206 byte // Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin home_offset // set the rectangle in which to probe
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180 #define BACK_PROBE_BED_POSITION 180

View file

@ -403,12 +403,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Note: this feature occupies 10'206 byte // Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin home_offset // set the rectangle in which to probe
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180 #define BACK_PROBE_BED_POSITION 180

View file

@ -427,12 +427,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -432,12 +432,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -456,12 +456,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -426,12 +426,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -424,12 +424,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -426,12 +426,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
// The edges of the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15 #define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170 #define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20 #define FRONT_PROBE_BED_POSITION 20

View file

@ -103,10 +103,7 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
X2_DIR_WRITE(v); \ X2_DIR_WRITE(v); \
} \ } \
else { \ else { \
if (current_block->active_extruder) \ if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
} }
#define X_APPLY_STEP(v,ALWAYS) \ #define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \ if (extruder_duplication_enabled || ALWAYS) { \
@ -114,10 +111,7 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
X2_STEP_WRITE(v); \ X2_STEP_WRITE(v); \
} \ } \
else { \ else { \
if (current_block->active_extruder != 0) \ if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
} }
#else #else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
@ -125,16 +119,16 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#endif #endif
#ifdef Y_DUAL_STEPPER_DRIVERS #ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR) #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v) #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
#else #else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif #endif
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v) #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v) #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
#else #else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)

View file

@ -437,7 +437,7 @@ static void lcd_main_menu() {
void lcd_set_home_offsets() { void lcd_set_home_offsets() {
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
if (i != E_AXIS) { if (i != E_AXIS) {
add_homing[i] -= current_position[i]; home_offset[i] -= current_position[i];
current_position[i] = 0.0; current_position[i] = 0.0;
} }
} }